We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Γ be a finite graph and let $A(\Gamma)$ be the corresponding right-angled Artin group. From an arbitrary basis $\mathcal B$ of $H^1(A(\Gamma),\mathbb F)$ over an arbitrary field, we construct a natural graph $\Gamma_{\mathcal B}$ from the cup product, called the cohomology basis graph. We show that $\Gamma_{\mathcal B}$ always contains Γ as a subgraph. This provides an effective way to reconstruct the defining graph Γ from the cohomology of $A(\Gamma)$, to characterize the planarity of the defining graph from the algebra of $A(\Gamma)$ and to recover many other natural graph-theoretic invariants. We also investigate the behaviour of the cohomology basis graph under passage to elementary subminors and show that it is not well-behaved under edge contraction.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$-th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$, and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$.
We determine the characteristic polynomials of the matrices $[q^{\,j-k}+t]_{1\le \,j,k\le n}$ and $[q^{\,j+k}+t]_{1\le \,j,k\le n}$ for any complex number $q\not =0,1$. As an application, for complex numbers $a,b,c$ with $b\not =0$ and $a^2\not =4b$, and the sequence $(w_m)_{m\in \mathbb Z}$ with $w_{m+1}=aw_m-bw_{m-1}$ for all $m\in \mathbb Z$, we determine the exact value of $\det [w_{\,j-k}+c\delta _{jk}]_{1\le \,j,k\le n}$.
We introduce a generalization of immanants of matrices, using partition algebra characters in place of symmetric group characters. We prove that our immanant-like function on square matrices, which we refer to as the recombinant, agrees with the usual definition for immanants for the special case whereby the vacillating tableaux associated with the irreducible characters correspond, according to the Bratteli diagram for partition algebra representations, to the integer partition shapes for symmetric group characters. In contrast to previously studied variants and generalizations of immanants, as in Temperley–Lieb immanants and f-immanants, the sum that we use to define recombinants is indexed by a full set of partition diagrams, as opposed to permutations.
To every finite metric space X, including all connected unweighted graphs with the minimum edge-distance metric, we attach an invariant that we call its blowup-polynomial $p_X(\{ n_x : x \in X \})$. This is obtained from the blowup $X[\mathbf {n}]$ – which contains $n_x$ copies of each point x – by computing the determinant of the distance matrix of $X[\mathbf {n}]$ and removing an exponential factor. We prove that as a function of the sizes $n_x$, $p_X(\mathbf {n})$ is a polynomial, is multi-affine, and is real-stable. This naturally associates a hitherto unstudied delta-matroid to each metric space X; we produce another novel delta-matroid for each tree, which interestingly does not generalize to all graphs. We next specialize to the case of $X = G$ a connected unweighted graph – so $p_G$ is “partially symmetric” in $\{ n_v : v \in V(G) \}$ – and show three further results: (a) We show that the polynomial $p_G$ is indeed a graph invariant, in that $p_G$ and its symmetries recover the graph G and its isometries, respectively. (b) We show that the univariate specialization $u_G(x) := p_G(x,\dots ,x)$ is a transform of the characteristic polynomial of the distance matrix $D_G$; this connects the blowup-polynomial of G to the well-studied “distance spectrum” of G. (c) We obtain a novel characterization of complete multipartite graphs, as precisely those for which the “homogenization at $-1$” of $p_G(\mathbf { n})$ is real-stable (equivalently, Lorentzian, or strongly/completely log-concave), if and only if the normalization of $p_G(-\mathbf { n})$ is strongly Rayleigh.
We introduce a notion of barycenter of a probability measure related to the symmetric mean of a collection of non-negative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a sequence of dynamical observations converge to the Halász–Székely barycenter of the corresponding distribution.
For a not-necessarily commutative ring $R$ we define an abelian group $W(R;M)$ of Witt vectors with coefficients in an $R$-bimodule $M$. These groups generalize the usual big Witt vectors of commutative rings and we prove that they have analogous formal properties and structure. One main result is that $W(R) := W(R;R)$ is Morita invariant in $R$. For an $R$-linear endomorphism $f$ of a finitely generated projective $R$-module we define a characteristic element $\chi _f \in W(R)$. This element is a non-commutative analogue of the classical characteristic polynomial and we show that it has similar properties. The assignment $f \mapsto \chi _f$ induces an isomorphism between a suitable completion of cyclic $K$-theory $K_0^{\mathrm {cyc}}(R)$ and $W(R)$.
By making use of the Cauchy double alternant and the Laplace expansion formula, we establish two closed formulae for the determinants of factorial fractions that are then utilised to evaluate several determinants of binomial coefficients and Catalan numbers, including those obtained recently by Chammam [‘Generalized harmonic numbers, Jacobi numbers and a Hankel determinant evaluation’, Integral Transforms Spec. Funct.30(7) (2019), 581–593].
Necessary and sufficient conditions for the equality of the determinant and permanent for all powers of a given matrix are provided. The characterisation is based on a condition on merely one power.
Immanants are functions on square matrices generalizing the determinant and permanent. Kazhdan–Lusztig immanants, which are indexed by permutations, involve $q=1$ specializations of Type A Kazhdan–Lusztig polynomials, and were defined by Rhoades and Skandera (2006, Journal of Algebra 304, 793–811). Using results of Haiman (1993, Journal of the American Mathematical Society 6, 569–595) and Stembridge (1991, Bulletin of the London Mathematical Society 23, 422–428), Rhoades and Skandera showed that Kazhdan–Lusztig immanants are nonnegative on matrices whose minors are nonnegative. We investigate which Kazhdan–Lusztig immanants are positive on k-positive matrices (matrices whose minors of size $k \times k$ and smaller are positive). The Kazhdan–Lusztig immanant indexed by v is positive on k-positive matrices if v avoids 1324 and 2143 and for all noninversions $i< j$ of v, either $j-i \leq k$ or $v_j-v_i \leq k$. Our main tool is Lewis Carroll’s identity.
We provide a generalised Laplace expansion for the permanent function and, as a consequence, we re-prove a multinomial Vandermonde convolution. Some combinatorial identities are derived by applying special matrices to the expansion.
The Toda equation and its variants are studied in the filed of integrable systems. One particularly generalized time discretisation of the Toda equation is known as the discrete hungry Toda (dhToda) equation, which has two main variants referred to as the dhTodaI equation and dhTodaII equation. The dhToda equations have both been shown to be applicable to the computation of eigenvalues of totally nonnegative (TN) matrices, which are matrices without negative minors. The dhTodaI equation has been investigated with respect to the properties of integrable systems, but the dhTodaII equation has not. Explicit solutions using determinants and matrix representations called Lax pairs are often considered as symbolic properties of discrete integrable systems. In this paper, we clarify the determinant solution and Lax pair of the dhTodaII equation by focusing on an infinite sequence. We show that the resulting determinant solution firmly covers the general solution to the dhTodaII equation, and provide an asymptotic analysis of the general solution as discrete-time variable goes to infinity.
The structure of Schur multiplicative maps on matrices over a field is studied. The result is then used to characterize Schur multiplicative maps f satisfying for different subsets S of matrices including the set of rank k matrices, the set of singular matrices, and the set of invertible matrices. Characterizations are also obtained for maps on matrices such that Γ(f(A))=Γ(A) for various functions Γ including the rank function, the determinant function, and the elementary symmetric functions of the eigenvalues. These results include analogs of the theorems of Frobenius and Dieudonné on linear maps preserving the determinant functions and linear maps preserving the set of singular matrices, respectively.