We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The proof of Theorem 3.14 contains an unsubstantiated claim. To overcome this problem, we add a hypothesis to the statement of 3.14 and we provide a new valid proof. We adjust Theorem 3.15, Corollary 3.16, Proposition 4.23, Theorem 4.26, Corollary 4.29, and Corollary 4.32 accordingly.
We propose a notion of a proper Ehresmann semigroup based on a three-coordinate description of its generating elements governed by certain labelled directed graphs with additional structure. The generating elements are determined by their domain projection, range projection and σ-class, where σ denotes the minimum congruence that identifies all projections. We prove a structure result on proper Ehresmann semigroups and show that every Ehresmann semigroup has a proper cover. Our covering monoid turns out to be isomorphic to that from the work by Branco, Gomes and Gould and provides a new view of the latter. Proper Ehresmann semigroups all of whose elements admit a three-coordinate description are characterized in terms of partial multiactions of monoids on semilattices. As a consequence, we recover the two-coordinate structure result on proper restriction semigroups.
We provide a correspondence between one-sided coideal subrings and one-sided ideal two-sided coideals in an arbitrary bialgebroid. We prove that, under some expected additional conditions, this correspondence becomes bijective for Hopf algebroids. As an application, we investigate normal Hopf ideals in commutative Hopf algebroids (affine groupoid schemes) in connection with the study of normal affine subgroupoids.
We show that the bicategory of finite groupoids and right-free permutation bimodules is a quotient of the bicategory of Mackey 2-motives introduced in [2], obtained by modding out the so-called cohomological relations. This categorifies Yoshida’s theorem for ordinary cohomological Mackey functors and provides a direct connection between Mackey 2-motives and the usual blocks of representation theory.
We introduce ‘generalised higher-rank k-graphs’ as a class of categories equipped with a notion of size. They extend not only higher-rank k-graphs, but also the Levi categories introduced by the first author as a categorical setting for graphs of groups. We prove that examples of generalised higher-rank k-graphs can be constructed using Zappa–Szép products of groupoids and higher-rank graphs.
Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$), we show that if the ideals $D_e$, with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.
Let $S|_{R}$ be a groupoid Galois extension with Galois groupoid $G$ such that $E_{g}^{G_{r(g)}}\subseteq C1_{g}$, for all $g\in G$, where $C$ is the centre of $S$, $G_{r(g)}$ is the principal group associated to $r(g)$ and $\{E_{g}\}_{g\in G}$ are the ideals of $S$. We give a complete characterisation in terms of a partial isomorphism groupoid for such extensions, showing that $G=\dot{\bigcup }_{g\in G}\text{Isom}_{R}(E_{g^{-1}},E_{g})$ if and only if $E_{g}$ is a connected commutative algebra or $E_{g}=E_{g}^{G_{r(g)}}\oplus E_{g}^{G_{r(g)}}$, where $E_{g}^{G_{r(g)}}$ is connected, for all $g\in G$.
Paterson showed how to construct an étale groupoid from an inverse semigroup using ideas from functional analysis. This construction was later simplified by Lenz. We show that Lenz’s construction can itself be further simplified by using filters: the topological groupoid associated with an inverse semigroup is precisely a groupoid of filters. In addition, idempotent filters are closed inverse subsemigroups and so determine transitive representations by means of partial bijections. This connection between filters and representations by partial bijections is exploited to show how linear representations of inverse semigroups can be constructed from the groups occurring in the associated topological groupoid.
It follows from methods of B. Steinberg, extended to inverse categories, that finite inverse category algebras are isomorphic to their associated groupoid algebras; in particular, they are symmetric algebras with canonical symmetrizing forms.We deduce the existence of transfer maps in cohomology and Hochschild cohomology from certain inverse subcategories. This is in part motivated by the observation that, for certain categories , being a Mackey functor on is equivalent to being extendible to a suitable inverse category containing . We further show that extensions of inverse categories by abelian groups are again inverse categories.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.