We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be the Lie group ${\mathbb{R}}^2\rtimes {\mathbb{R}}^+$ endowed with the Riemannian symmetric space structure. Take a distinguished basis $X_0,\, X_1,\,X_2$ of left-invariant vector fields of the Lie algebra of G, and consider the Laplacian $\Delta=-\sum_{i=0}^2X_i^2$ and the first-order Riesz transforms $\mathcal R_i=X_i\Delta^{-1/2}$, $i=0,1,2$. We first show that the atomic Hardy space H1 in G introduced by the authors in a previous paper does not admit a characterization in terms of the Riesz transforms $\mathcal R_i$. It is also proved that two of these Riesz transforms are bounded from H1 to H1.
We establish hyperweak boundedness of area functions, square functions, maximal operators, and Calderón–Zygmund operators on products of two stratified Lie groups.
If $\mu $ is a smooth measure supported on a real-analytic submanifold of ${\mathbb {R}}^{2n}$ which is not contained in any affine hyperplane, then the Weyl transform of $\mu $ is a compact operator.
In this paper, we investigate the $H^{p}(G) \rightarrow L^{p}(G)$, $0< p \leq 1$, boundedness of multiplier operators defined via group Fourier transform on a graded Lie group $G$, where $H^{p}(G)$ is the Hardy space on $G$. Our main result extends those obtained in [Colloq. Math. 165 (2021), 1–30], where the $L^{1}(G)\rightarrow L^{1,\infty }(G)$ and $L^{p}(G) \rightarrow L^{p}(G)$, $1< p <\infty$, boundedness of such Fourier multiplier operators were proved.
In this paper, we prove contact Poincaré and Sobolev inequalities in Heisenberg groups $\mathbb{H}^{n}$, where the word ‘contact’ is meant to stress that de Rham’s exterior differential is replaced by the exterior differential of the so-called Rumin complex $(E_{0}^{\bullet },d_{c})$, which recovers the scale invariance under the group dilations associated with the stratification of the Lie algebra of $\mathbb{H}^{n}$. In addition, we construct smoothing operators for differential forms on sub-Riemannian contact manifolds with bounded geometry, which act trivially on cohomology. For instance, this allows us to replace a closed form, up to adding a controlled exact form, with a much more regular differential form.
In this paper we consider uncertainty principles for solutions of certain partial differential equations on $H$-type groups. We first prove that, on $H$-type groups, the heat kernel is an average of Gaussians in the central variable, so that it does not satisfy a certain reformulation of Hardy’s uncertainty principle. We then prove the analogue of Hardy’s uncertainty principle for solutions of the Schrödinger equation with potential on $H$-type groups. This extends the free case considered by Ben Saïd et al. [‘Uniqueness of solutions to Schrödinger equations on H-type groups’, J. Aust. Math. Soc. (3)95 (2013), 297–314] and by Ludwig and Müller [‘Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups’, Proc. Amer. Math. Soc.142 (2014), 2101–2118].
We prove that the HRT (Heil, Ramanathan, and Topiwala) Conjecture is equivalent to the conjecture that co-central translates of square-integrable functions on the Heisenberg group are linearly independent.
In this paper, we study the probability distribution of the word map $w(x_{1},x_{2},\ldots ,x_{k})=x_{1}^{n_{1}}x_{2}^{n_{2}}\cdots x_{k}^{n_{k}}$ in a compact Lie group. We show that the probability distribution can be represented as an infinite series. Moreover, in the case of the Lie group $\text{SU}(2)$, our computations give a nice convergent series for the probability distribution.
where $\tau :{\open R}^n\to {\open R}^n$ is a general function. In particular, for the linear choices $\tau (x)=0$, $\tau (x)=x$ and $\tau (x)={x}/{2}$ this covers the well-known Kohn–Nirenberg, anti-Kohn–Nirenberg and Weyl quantizations, respectively. Quantizations of such type appear naturally in the analysis on nilpotent Lie groups for polynomial functions τ and here we investigate the corresponding calculus in the model case of ${\open R}^n$. We also give examples of nonlinear τ appearing on the polarized and non-polarized Heisenberg groups.
We prove that all convolution products of pairs of continuous orbital measures in rank one, compact symmetric spaces are absolutely continuous and determine which convolution products are in $L^{2}$ (meaning that their density function is in $L^{2}$). We characterise the pairs whose convolution product is either absolutely continuous or in $L^{2}$ in terms of the dimensions of the corresponding double cosets. In particular, we prove that if $G/K$ is not $\text{SU}(2)/\text{SO}(2)$, then the convolution of any two regular orbital measures is in $L^{2}$, while in $\text{SU}(2)/\text{SO}(2)$ there are no pairs of orbital measures whose convolution product is in $L^{2}$.
This paper deals with the Schrödinger equation $i{\partial }_{s} u(\mathbf{z} , t; s)- \mathcal{L} u(\mathbf{z} , t; s)= 0, $ where $ \mathcal{L} $ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $\vert f(\mathbf{z} , t)\vert \lesssim {q}_{\alpha } (\mathbf{z} , t), $ where ${q}_{s} $ is the heat kernel associated to $ \mathcal{L} . $ If in addition $\vert u(\mathbf{z} , t; {s}_{0} )\vert \lesssim {q}_{\beta } (\mathbf{z} , t), $ for some ${s}_{0} \in \mathbb{R} \setminus \{ 0\} , $ then we prove that $u(\mathbf{z} , t; s)= 0$ for all $s\in \mathbb{R} $ whenever $\alpha \beta \lt { s}_{0}^{2} . $ This result holds true in the more general context of $H$-type groups. We also prove an analogous result for the Grushin operator on ${ \mathbb{R} }^{n+ 1} . $
We show that every orbital measure, ${\mu }_{x} $, on a compact exceptional Lie group or algebra has the property that for every positive integer either ${ \mu }_{x}^{k} \in {L}^{2} $ and the support of ${ \mu }_{x}^{k} $ has non-empty interior, or ${ \mu }_{x}^{k} $ is singular to Haar measure and the support of ${ \mu }_{x}^{k} $ has Haar measure zero. We also determine the index $k$ where the change occurs; it depends on properties of the set of annihilating roots of $x$. This result was previously established for the classical Lie groups and algebras. To prove this dichotomy result we combinatorially characterize the subroot systems that are kernels of certain homomorphisms.
Let Δ be an affine building of type and let 𝔸 be its fundamental apartment. We consider the set 𝕌0 of vertices of type 0 of 𝔸 and prove that the Hecke algebra of all W0-invariant difference operators with constant coefficients acting on 𝕌0 has three generators. This property leads us to define three Laplace operators on vertices of type 0 of Δ. We prove that there exists a joint eigenspace of these operators having dimension greater than ∣W0 ∣. This implies that there exist joint eigenfunctions of the Laplacians that cannot be expressed, via the Poisson transform, in terms of a finitely additive measure on the maximal boundary Ω of Δ.
Let G/K be a noncompact symmetric space, Gc/K its compact dual, 𝔤=𝔨⊕𝔭 the Cartan decomposition of the Lie algebra 𝔤 of G, 𝔞 a maximal abelian subspace of 𝔭, H be an element of 𝔞, a=exp (H) , and ac =exp (iH) . In this paper, we prove that if for some positive integer r, νrac is absolutely continuous with respect to the Haar measure on Gc, then νra is absolutely continuous with respect to the left Haar measure on G, where νac (respectively νa) is the K-bi-invariant orbital measure supported on the double coset KacK (respectively KaK). We also generalize a result of Gupta and Hare [‘Singular dichotomy for orbital measures on complex groups’, Boll. Unione Mat. Ital. (9) III (2010), 409–419] to general noncompact symmetric spaces and transfer many of their results from compact symmetric spaces to their dual noncompact symmetric spaces.
We prove that in any compact symmetric space, G/K, there is a dense set of a1,a2∈G such that if μj=mK*δaj*mk is the K-bi-invariant measure supported on KajK, then μ1*μ2 is absolutely continuous with respect to Haar measure on G. Moreover, the product of double cosets, Ka1Ka2K, has nonempty interior in G.
A distribution on a Heisenberg type group of homogeneous dimension Q is a biradial kernel of type α if it coincides with a biradial function, homogeneous of degree α — Q, and smooth away from the identity. We prove that a distribution is a biradial kernel of type α, 0 < α < Q, if and only if its Gelfand transform, defined on the Heisenberg fan, extends to a smooth even function on the upper half plane, homogeneous of degree −α/2. A similar result holds for radial kernels on the Heisenberg group.
Pointwise bounds for characters of representations of the compact, connected, simple, exceptional Life groups are obtained. It is a classical result that if μ is a central, continuous measure on such a group, then μdimG is absolutely continuous. Our estimates on the size of characters allow us to prove that the exponent, dimension of G, can be replaced by approximately the rank of G. Similar results were obtained earlier for the classical, compact Lie groups.
A harmonic NA group is a suitable solvable extension of a two-step nilpotent Lie group N of Heisenberg type by R+, which acts on N by anisotropic dilations. A hypergroup is a locally compact space for which the space of Borel measures has a convolution structure preserving the probability measures and satisfying suitable conditions. We describe a class of hypergroups associated to NA groups.
Pointwise bounds for characters of representations of the classical, compact, connected, simple Lie groups are obtained with which allow us to study the singularity of central measures. For example, we find the minimal integer k such that any continuous orbital measure convolved with itself k times belongs to L2. We also prove that if k = rank G then μ 2k ∈ L1 for all central, continuous measures μ. This improves upon the known classical result which required the exponent to be dimension of the group G.
We study the Cesàro operator on the classical group G and give a necessary and sufficient condition on the index α = α(G) for which the operator is convergent to f(U) for any continuous function f as N → ∞. The result in this paper solves a question posed by Gong in the book Harmonic analysis on classical groups.