We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nakamura and Tsuji recently obtained an integral inequality involving a Laplace transform of even functions that implies, at the limit, the Blaschke-Santaló inequality in its functional form. Inspired by their method, based on the Fokker-Planck semi-group, we extend the inequality to non-even functions. We consider a well-chosen centering procedure by studying the infimum over translations in a double Laplace transform. This requires a new look on the existing methods and leads to several observations of independent interest on the geometry of the Laplace transform. Application to reverse hypercontractivity is also given.
In this paper we consider the workload of a storage system with the unconventional feature that the arrival times, rather than the interarrival times, are independent and identically distributed samples from a given distribution. We start by analyzing the ‘base model’ in which the arrival times are exponentially distributed, leading to a closed-form characterization of the queue’s workload at a given moment in time (i.e. in terms of Laplace–Stieltjes transforms), assuming the initial workload was 0. Then we consider four more general models, each of them having a specific additional feature: (a) the initial workload being allowed to have any arbitrary non-negative value, (b) an additional stream of Poisson arrivals, (c) phase-type arrival times, (d) balking customers. For all four variants the transform of the transient workload is identified in closed form.
Multi-compartment models described by systems of linear ordinary differential equations are considered. Catenary models are a particular class where the compartments are arranged in a chain. A unified methodology based on the Laplace transform is utilised to solve direct and inverse problems for multi-compartment models. Explicit formulas for the parameters in a catenary model are obtained in terms of the roots of elementary symmetric polynomials. A method to estimate parameters for a general multi-compartment model is also provided. Results of numerical simulations are presented to illustrate the effectiveness of the approach.
We investigate the Hawkes processes on the positive real line exhibiting both self-excitation and inhibition. Each point of such a point process impacts its future intensity by the addition of a signed reproduction function. The case of a nonnegative reproduction function corresponds to self-excitation, and has been widely investigated in the literature. In particular, there exists a cluster representation of the Hawkes process which allows one to apply known results for Galton–Watson trees. We use renewal techniques to establish limit theorems for Hawkes processes that have reproduction functions which are signed and have bounded support. Notably, we prove exponential concentration inequalities, extending results of Reynaud-Bouret and Roy (2006) previously proven for nonnegative reproduction functions using a cluster representation no longer valid in our case. Importantly, we establish the existence of exponential moments for renewal times of M/G/$\infty$ queues which appear naturally in our problem. These results possess interest independent of the original problem.
We investigate convergence in the cone of completely monotone functions. Particular attention is paid to the approximation of and by exponentials and stretched exponentials. The need for such an analysis is a consequence of the fact that although stretched exponentials can be approximated by sums of exponentials, exponentials cannot in general be approximated by sums of stretched exponentials.
The longest gap $L(t)$ up to time $t$ in a homogeneous Poisson process is the maximal time subinterval between epochs of arrival times up to time $t$; it has applications in the theory of reliability. We study the Laplace transform asymptotics for $L(t)$ as $t\rightarrow \infty$ and derive two natural and different large-deviation principles for $L(t)$ with two distinct rate functions and speeds.
The valuation of perpetual timer options under the Hull–White stochastic volatility model is discussed here. By exploring the connection between the Hull–White model and the Bessel process and using time-change techniques, the triple joint distribution for the instantaneous volatility, the cumulative reciprocal volatility and the cumulative realized variance is obtained. An explicit analytical solution for the price of perpetual timer call options is derived as a Black–Scholes–Merton-type formula.
The longest stretch L(n) of consecutive heads in n independent and identically distributed coin tosses is seen from the prism of large deviations. We first establish precise asymptotics for the moment generating function of L(n) and then show that there are precisely two large deviation principles, one concerning the behavior of the distribution of L(n) near its nominal value log1∕pn and one away from it. We discuss applications to inference and to logarithmic asymptotics of functionals of L(n).
Let (X1,...,Xn) be multivariate normal, with mean vector 𝛍 and covariance matrix 𝚺, and let Sn=eX1+⋯+eXn. The Laplace transform ℒ(θ)=𝔼e-θSn∝∫exp{-hθ(𝒙)}d𝒙 is represented as ℒ̃(θ)I(θ), where ℒ̃(θ) is given in closed form and I(θ) is the error factor (≈1). We obtain ℒ̃(θ) by replacing hθ(𝒙) with a second-order Taylor expansion around its minimiser 𝒙*. An algorithm for calculating the asymptotic expansion of 𝒙* is presented, and it is shown that I(θ)→ 1 as θ→∞. A variety of numerical methods for evaluating I(θ) is discussed, including Monte Carlo with importance sampling and quasi-Monte Carlo. Numerical examples (including Laplace-transform inversion for the density of Sn) are also given.
Transform-based algorithms have wide applications in applied probability, but rarely provide computable error bounds to guarantee the accuracy. We propose an inversion algorithm for two-sided Laplace transforms with computable error bounds. The algorithm involves a discretization parameter C and a truncation parameter N. By choosing C and N using the error bounds, the algorithm can achieve any desired accuracy. In many cases, the bounds decay exponentially, leading to fast computation. Therefore, the algorithm is especially suitable to provide benchmarks. Examples from financial engineering, including valuation of cumulative distribution functions of asset returns and pricing of European and exotic options, show that our algorithm is fast and easy to implement.
This paper proposes a Laplace-transform-based approach to price the fixed-strike quantile options as well as to calculate the associated hedging parameters (delta and gamma) under a hyperexponential jump diffusion model, which can be viewed as a generalization of the well-known Black-Scholes model and Kou's double exponential jump diffusion model. By establishing a relationship between floating- and fixed-strike quantile option prices, we can also apply this pricing and hedging method to floating-strike quantile options. Numerical experiments demonstrate that our pricing and hedging method is fast, stable, and accurate.
In this paper we consider a structural form credit risk model with jumps. We investigate the credit spread, the price, and the fair premium of the zero-coupon bond for the proposed model. The price and the fair premium of the bond are associated with the Laplace transform of default time and the firm's expected present market value at default. We give sufficient conditions under which the Laplace transform and the expected present market value of a firm at default are twice continuously differentiable. We derive closed-form expressions for them when the jumps have a hyperexponential distribution. Using the closed-form expressions, we obtain numerical solutions for the default probability, the credit spread, and the fair premium of the bond.
In this paper we consider the splitting method first introduced in rare event analysis. In this technique, the sample paths are split into R multiple copies at various stages to speed up the simulation. Given the cost, the optimization of the algorithm suggests taking all the transition probabilities to be equal; nevertheless, in practice, these quantities are unknown. We address this problem by presenting an algorithm in two phases.
It is shown that, when expressing arguments in terms of their logarithms, the Laplace transform of a function is related to the antiderivative of this function by a simple convolution. This allows efficient numerical computations of moment generating functions of positive random variables and their inversion. The application of the method is straightforward, apart from the necessity to implement it using high-precision arithmetics. In numerical examples the approach is demonstrated to be particularly useful for distributions with heavy tails, such as lognormal, Weibull, or Pareto distributions, which are otherwise difficult to handle. The computational efficiency compared to other methods is demonstrated for an M/G/1 queueing problem.
We give a simplified proof of the complex inversion formula for semigroups and, more generally, solution families for scalar-type Volterra equations, including the stronger versions on unconditional martingale differences (UMD) spaces. Our approach is based on (elementary) Fourier analysis.
We establish Klar's (2002) conjecture about sharp reliability bounds for life distributions in the ℒα-class in reliability theory. The key idea is to construct a set of two-point distributions whose support points satisfy a certain system of equalities and inequalities.
Consider a countable list of files updated according to the move-to-front rule. Files have independent random weights, which are used to construct request probabilities. Exact and asymptotic formulae for the Laplace transform of the stationary search cost are given for i.i.d. weights. Similar expressions are derived for the first two moments. Some results are extended to the case of independent weights.
This paper studies the first passage times to flat boundaries for a double exponential jump diffusion process, which consists of a continuous part driven by a Brownian motion and a jump part with jump sizes having a double exponential distribution. Explicit solutions of the Laplace transforms, of both the distribution of the first passage times and the joint distribution of the process and its running maxima, are obtained. Because of the overshoot problems associated with general jump diffusion processes, the double exponential jump diffusion process offers a rare case in which analytical solutions for the first passage times are feasible. In addition, it leads to several interesting probabilistic results. Numerical examples are also given. The finance applications include pricing barrier and lookback options.
This paper first recalls some stochastic orderings useful for studying the ℒ-class and the Laplace order in general. We use these orders to show that the higher moments of an ℒ-class distribution need not exist. Using simple sufficient conditions for the Laplace ordering, we give examples of distributions in the ℒ- and ℒα-classes. Moreover, we present explicit sharp bounds on the survival function of a distribution belonging to the ℒ-class of life distributions. The results reveal that the ℒ-class should not be seen as a more comprehensive class of ageing distributions but rather as a large class of life distributions on its own.
We consider positive linear operators of probabilistic type L1f acting on real functions f defined on the positive semi-axis. We deal with the problem of uniform convergence of L1f to f, both in the usual sup-norm and in a uniform Lp type of norm. In both cases, we obtain direct and converse inequalities in terms of a suitable weighted first modulus of smoothness of f. These results are applied to the Baskakov operator and to a gamma operator connected with real Laplace transforms, Poisson mixtures and Weyl fractional derivatives of Laplace transforms.