We developed a numerical method to investigate the effects of flow properties and phase transition between a gas and a liquid on sloshing-induced impact pressures acting on the walls of a partially filled tank. The conservation equations of mass, momentum and energy, as well as a transport equation for the volume fraction, were solved by considering flow compressibility, surface tension and phase transition. We modelled the phase transition by employing a mass transfer model, and validated our numerical method against experimental data. We investigated the effects of flow compressibility and density ratio between gas and liquid, representing a range similar to that of natural gas and hydrogen. We examined the effects of phase transition on sloshing-induced impact loads caused by a single-impact wave with gas pockets. Compressibility, density ratio and phase transition significantly affected the flow of the liquid–gas interface in the tank and, consequently, the impact pressure. The gas compressibility, caused by a single-wave impact with gas pockets, reduced the impact pressures significantly. Although the influence of density ratio on impact pressures is often emphasised, we demonstrated that, for impacts with gas pockets, the gas density was decisive and not the density ratio. With increasing gas density, the shape of the liquid–gas interface changed, and the pressure peak decreased. For the cases investigated, the viscosity of the liquid phase hardly influenced the impact pressures. Furthermore, the phase change during condensation considerably reduced the impact pressure peak. The pressure fluctuations after the first impact were strongly damped due to the vaporisation process.