Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$ be the character table for
$S_n,$ where the indices
$\lambda $ and
$\mu $ run over the
$p(n)$ many integer partitions of
$n.$ In this note, we study
$Z_{\ell }(n),$ the number of zero entries
$\chi _{\lambda }(\mu )$ in
$\mathcal {C}_n,$ where
$\lambda $ is an
$\ell $-core partition of
$n.$ For every prime
$\ell \geq 5,$ we prove an asymptotic formula of the form
$$ \begin{align*}Z_{\ell}(n)\sim \alpha_{\ell}\cdot \sigma_{\ell}(n+\delta_{\ell})p(n)\gg_{\ell} n^{\frac{\ell-5}{2}}e^{\pi\sqrt{2n/3}}, \end{align*} $$ where
$\sigma _{\ell }(n)$ is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$ and
$1/\alpha _{\ell }>0$ is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$ For primes
$\ell $ and
$n>\ell ^6/24,$ we show that
$\chi _{\lambda }(\mu )=0$ whenever
$\lambda $ and
$\mu $ are both
$\ell $-cores. Furthermore, if
$Z^*_{\ell }(n)$ is the number of zero entries indexed by two
$\ell $-cores, then, for
$\ell \geq 5$, we obtain the asymptotic
$$ \begin{align*}Z^*_{\ell}(n)\sim \alpha_{\ell}^2 \cdot \sigma_{\ell}( n+\delta_{\ell})^2 \gg_{\ell} n^{\ell-3}. \end{align*} $$