To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let {X1 , . . , Xn} be a collection of binary-valued random variables and let f : {0, 1}n → $\mathbb{R}$ be a Lipschitz function. Under a negative dependence hypothesis known as the strong Rayleigh condition, we show that f − ${\mathbb E}$f satisfies a concentration inequality. The class of strong Rayleigh measures includes determinantal measures, weighted uniform matroids and exclusion measures; some familiar examples from these classes are generalized negative binomials and spanning tree measures. For instance, any Lipschitz-1 function of the edges of a uniform spanning tree on vertex set V (e.g., the number of leaves) satisfies the Gaussian concentration inequality
\begin{linenomath}$${{\mathbb P} (f - {\mathbb E} f \geq a) \leq \exp \biggl( - \frac{a^2}{8 \, |V|} \biggr) }.$$\end{linenomath}
We also prove a continuous version for concentration of Lipschitz functionals of a determinantal point process.
We consider numbers and sizes of independent sets in graphs with minimum degree at least d. In particular, we investigate which of these graphs yield the maximum numbers of independent sets of different sizes, and which yield the largest random independent sets. We establish a strengthened form of a conjecture of Galvin concerning the first of these topics.
A colouring of a graph G is called distinguishing if its stabilizer in Aut G is trivial. It has been conjectured that, if every automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We study properties of random 2-colourings of locally finite graphs and show that the stabilizer of such a colouring is almost surely nowhere dense in Aut G and a null set with respect to the Haar measure on the automorphism group. We also investigate random 2-colourings in several classes of locally finite graphs where the existence of a distinguishing 2-colouring has already been established. It turns out that in all of these cases a random 2-colouring is almost surely distinguishing.
For k-graphs F0 and H, an F0-packing of H is a family $\mathscr{F}$ of pairwise edge-disjoint copies of F0 in H. Let νF0(H) denote the maximum size |$\mathscr{F}$| of an F0-packing of H. Already in the case of graphs, computing νF0(H) is NP-hard for most fixed F0 (Dor and Tarsi [6]).
In this paper, we consider the case when F0 is a fixed linear k-graph. We establish an algorithm which, for ζ > 0 and a given k-graph H, constructs in time polynomial in |V(H)| an F0-packing of H of size at least νF0(H) − ζ |V(H)|k. Our result extends one of Haxell and Rödl, who established the analogous algorithm for graphs.
A minimum feedback arc set of a directed graph G is a smallest set of arcs whose removal makes G acyclic. Its cardinality is denoted by β(G). We show that a simple Eulerian digraph with n vertices and m arcs has β(G) ≥ m2/2n2+m/2n, and this bound is optimal for infinitely many m, n. Using this result we prove that a simple Eulerian digraph contains a cycle of length at most 6n2/m, and has an Eulerian subgraph with minimum degree at least m2/24n3. Both estimates are tight up to a constant factor. Finally, motivated by a conjecture of Bollobás and Scott, we also show how to find long cycles in Eulerian digraphs.
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
Together, Sets and Proofs and its sister volume Models and Computability will provide readers with a comprehensive guide to mathematical logic. All the authors are leaders in their fields and are drawn from the invited speakers at 'Logic Colloquium '97' (the major international meeting of the Association of Symbolic Logic). It is expected that the breadth and timeliness of these two volumes will prove an invaluable and unique resource for specialists, post-graduate researchers, and the informed and interested nonspecialist.
The tensor product (G1,G2) of a graph G1 and a pointed graph G2 (containing one distinguished edge) is obtained by identifying each edge of G1 with the distinguished edge of a separate copy of G2, and then removing the identified edges. A formula to compute the Tutte polynomial of a tensor product of graphs was originally given by Brylawski. This formula was recently generalized to coloured graphs and the generalized Tutte polynomial introduced by Bollobás and Riordan. In this paper we generalize the coloured tensor product formula to relative Tutte polynomials of relative graphs, containing zero edges to which the usual deletion/contraction rules do not apply. As we have shown in a recent paper, relative Tutte polynomials may be used to compute the Jones polynomial of a virtual knot.
Given a (multi)digraph H, a digraph D is H-linked if every injective function ι:V(H) → V(D) can be extended to an H-subdivision. In this paper, we give sharp degree conditions that ensure a sufficiently large digraph D is H-linked for arbitrary H. The notion of an H-linked digraph extends the classes of m-linked, m-ordered and strongly m-connected digraphs.
First, we give sharp minimum semi-degree conditions for H-linkedness, extending results of Kühn and Osthus on m-linked and m-ordered digraphs. It is known that the minimum degree threshold for an undirected graph to be H-linked depends on a partition of the (undirected) graph H into three parts. Here, we show that the corresponding semi-degree threshold for H-linked digraphs depends on a partition of H into as many as nine parts.
We also determine sharp Ore–Woodall-type degree-sum conditions ensuring that a digraph D is H-linked for general H. As a corollary, we obtain (previously undetermined) sharp degree-sum conditions for m-linked and m-ordered digraphs.
Let Δ ≥ 2 be a fixed integer. We show that the random graph ${\mathcal{G}_{n,p}}$ with $p\gg (\log n/n)^{1/\Delta}$ is robust with respect to the containment of almost spanning bipartite graphs H with maximum degree Δ and sublinear bandwidth in the following sense: asymptotically almost surely, if an adversary deletes arbitrary edges from ${\mathcal{G}_{n,p}}$ in such a way that each vertex loses less than half of its neighbours, then the resulting graph still contains a copy of all such H.
These notes are based on a series of lectures given at the Advanced Research Institute of Discrete Applied Mathematics held at Rutgers University. Their aim is to link together algorithmic problems arising in knot theory, statistical physics and classical combinatorics. Apart from the theory of computational complexity concerned with enumeration problems, introductions are given to several of the topics treated, such as combinatorial knot theory, randomised approximation algorithms, percolation and random cluster models. To researchers in discrete mathematics, computer science and statistical physics, this book will be of great interest, but any non-expert should find it an appealing guide to a very active area of research.
We study cross-graph charging schemes for graphs drawn in the plane. These are charging schemes where charge is moved across vertices of different graphs. Such methods have recently been used to obtain various properties of triangulations that are embedded in a fixed set of points in the plane. We generalize this method to obtain results for various other types of graphs that are embedded in the plane. Specifically, we obtain a new bound of O*(187.53N) (where the O*(⋅) notation hides polynomial factors) for the maximum number of crossing-free straight-edge graphs that can be embedded in any specific set of N points in the plane (improving upon the previous best upper bound 207.85N in Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several other types of plane graphs (such as connected and bi-connected plane graphs), and obtain various bounds on the expected vertex-degrees in graphs that are uniformly chosen from the set of all crossing-free straight-edge graphs that can be embedded in a specific point set.
We then apply the cross-graph charging-scheme method to graphs that allow certain types of crossings. Specifically, we consider graphs with no set of k pairwise crossing edges (more commonly known as k-quasi-planar graphs). For k=3 and k=4, we prove that, for any set S of N points in the plane, the number of graphs that have a straight-edge k-quasi-planar embedding over S is only exponential in N.
Let G be a finite graph with minimum degree r. Form a random subgraph Gp of G by taking each edge of G into Gp independently and with probability p. We prove that for any constant ε > 0, if $p=\frac{1+\epsilon}{r}$, then Gp is non-planar with probability approaching 1 as r grows. This generalizes classical results on planarity of binomial random graphs.
The mean weight of a cycle in an edge-weighted graph is the sum of the cycle's edge weights divided by the cycle's length. We study the minimum mean-weight cycle on the complete graph on n vertices, with random i.i.d. edge weights drawn from an exponential distribution with mean 1. We show that the probability of the min mean weight being at most c/n tends to a limiting function of c which is analytic for c ≤ 1/e, discontinuous at c = 1/e, and equal to 1 for c > 1/e. We further show that if the min mean weight is ≤ 1/(en), then the length of the relevant cycle is Θp(1) (i.e., it has a limiting probability distribution which does not scale with n), but that if the min mean weight is > 1/(en), then the relevant cycle almost always has mean weight (1 + o(1))/(en) and length at least (2/π2 − o (1)) log2n log log n.
Let $\mathcal{H}$ be a set of connected graphs. A graph G is said to be $\mathcal{H}$-free if G does not contain any element of $\mathcal{H}$ as an induced subgraph. Let $\mathcal{F}_{k}(\mathcal{H})$ be the set of k-connected $\mathcal{H}$-free graphs. When we study the relationship between forbidden subgraphs and a certain graph property, we often allow a finite exceptional set of graphs. But if the symmetric difference of $\mathcal{F}_{k}(\mathcal{H}_{1})$ and $\mathcal{F}_{k}(\mathcal{H}_{2})$ is finite and we allow a finite number of exceptions, no graph property can distinguish them. Motivated by this observation, we study when we obtain a finite symmetric difference. In this paper, our main aim is the following. If $|\mathcal{H}|\leq 3$ and the symmetric difference of $\mathcal{F}_{1}(\{H\})$ and $\mathcal{F}_{1}(\mathcal{H})$ is finite, then either $H\in \mathcal{H}$ or $|\mathcal{H}|=3$ and H=C3. Furthermore, we prove that if the symmetric difference of $\mathcal{F}_{k}(\{H_{1}\})$ and $\mathcal{F}_{k}(\{H_{2}\})$ is finite, then H1=H2.
A perfect matching M in an edge-coloured complete bipartite graph Kn,n is rainbow if no pair of edges in M have the same colour. We obtain asymptotic enumeration results for the number of rainbow perfect matchings in terms of the maximum number of occurrences of each colour. We also consider two natural models of random edge-colourings of Kn,n and show that if the number of colours is at least n, then there is with high probability a rainbow perfect matching. This in particular shows that almost every square matrix of order n in which every entry appears n times has a Latin transversal.
A classical result of Robertson and Seymour states that the set of graphs containing a fixed planar graph H as a minor has the so-called Erdős–Pósa property; namely, there exists a function f depending only on H such that, for every graph G and every positive integer k, the graph G has k vertex-disjoint subgraphs each containing H as a minor, or there exists a subset X of vertices of G with |X| ≤ f(k) such that G − X has no H-minor (see Robertson and Seymour, J. Combin. Theory Ser. B41 (1986) 92–114). While the best function f currently known is exponential in k, a O(k log k) bound is known in the special case where H is a forest. This is a consequence of a theorem of Bienstock, Robertson, Seymour and Thomas on the pathwidth of graphs with an excluded forest-minor. In this paper we show that the function f can be taken to be linear when H is a forest. This is best possible in the sense that no linear bound is possible if H has a cycle.