To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Anyone browsing at the stationery store will see an incredible array of pop-up cards available for any occasion. The workings of pop-up cards and pop-up books can be remarkably intricate. Behind such designs lies beautiful geometry involving the intersection of circles, cones, and spheres, the movements of linkages, and other constructions. The geometry can be modelled by algebraic equations, whose solutions explain the dynamics. For example, several pop-up motions rely on the intersection of three spheres, a computation made every second for GPS location. Connecting the motions of the card structures with the algebra and geometry reveals abstract mathematics performing tangible calculations. Beginning with the nephroid in the 19th-century, the mathematics of pop-up design is now at the frontiers of rigid origami and algorithmic computational complexity. All topics are accessible to those familiar with high-school mathematics; no calculus required. Explanations are supplemented by 140+ figures and 20 animations.
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works by Martinelli, Morris, Toninelli and the authors, it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the companion paper by the first author, our work determines the logarithm of the infection time up to a constant factor for all critical KCM, which were previously known only up to logarithmic corrections. This improves all previous results except for the Duarte-KCM, for which we give a new proof of the best result known. We establish that on this level of precision critical KCM have to be classified into seven categories instead of the two in bootstrap percolation. In the present work, we establish lower bounds for critical KCM in a unified way, also recovering the universality result of Toninelli and the authors and the Duarte model result of Martinelli, Toninelli and the second author.
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
We consider the near-critical Erdős–Rényi random graph G(n, p) and provide a new probabilistic proof of the fact that, when p is of the form $p=p(n)=1/n+\lambda/n^{4/3}$ and A is large,
where $\mathcal{C}_{\max}$ is the largest connected component of the graph. Our result allows A and $\lambda$ to depend on n. While this result is already known, our proof relies only on conceptual and adaptable tools such as ballot theorems, whereas the existing proof relies on a combinatorial formula specific to Erdős–Rényi graphs, together with analytic estimates.
We present a modification of the Depth first search algorithm, suited for finding long induced paths. We use it to give simple proofs of the following results. We show that the induced size-Ramsey number of paths satisfies $\hat{R}_{\mathrm{ind}}(P_n)\leq 5 \cdot 10^7n$, thus giving an explicit constant in the linear bound, improving the previous bound with a large constant from a regularity lemma argument by Haxell, Kohayakawa and Łuczak. We also provide a bound for the k-colour version, showing that $\hat{R}_{\mathrm{ind}}^k(P_n)=O(k^3\log^4k)n$. Finally, we present a new short proof of the fact that the binomial random graph in the supercritical regime, $G(n,\frac{1+\varepsilon}{n})$, contains typically an induced path of length $\Theta(\varepsilon^2) n$.
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Gödel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.
We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma, states that for each $\epsilon>0$ there exists M such that every triangle-free graph G has an $\epsilon$-approximate homomorphism to a triangle-free graph F on at most M vertices (here an $\epsilon$-approximate homomorphism is a map $V(G) \to V(F)$ where all but at most $\epsilon \left\lvert{V(G)}\right\rvert^2$ edges of G are mapped to edges of F). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $\epsilon^{-1}$. We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal.
In this chapter we give a table with the feasible parameter sets of arbitrary strongly regular graphs on at most 512 vertices, and add comments about the known examples. These include: existence (and number of nonisomorphic examples), the parameters, the spectrum, information about being a descendant of a regular two-graph or being in the switching class of a regular two-graph, possible relation with a projective two-weight code,possible relation with a partial geometry, whether it is a conference graph or transversal design. Miscellaneous comments include references to earlier parts of the book, name of the graph, reason for non-existence, possible relation with a Steiner system, etc.
In the chapter we introduce (spherical) buildings. We develop the theory in some detail, sometimes providing proofs. We introduce the shadow geometries and discuss some properties of particular instances in detail. To that end we use “chain calculus”, which provides an efficient way to determine the diameter of a given shadow geometry, or the maximal distance between two generic objects of distinct type. We hence deduce that the shadow geometry of type E(6,1) yields a strongly regular graph. We provide an explicit construction of that geometry using a split octonion algebra. We also discuss the Klein correspondence, and we discuss triality, again with the aid of a split octonion algebra, and use this to construct the split Cayley hexagon over any field.We deduce a rank 4 representation of a corresponding strongly regular graph.
In this chapter, we look at graphs defined by a difference set in a usually abelian group. Difference sets in a vector space that are invariant under multiplication by scalars are equivalent to two-weight codes and to two-character subsets of a projective space. We survey a lot of examples of such two-character sets (infinite families and sporadic ones, the latter summarised in a table). We review cyclic codes, in particular cyclic two-weight codes and introduce the related Van Lint-Schrijver graphs, the Hill graph, the De Lange graphs and the Peisert graphs. Then our attention goes to the one-dimensional affine rank 3 graphs, which we review in some detail, including proofs of the parameter restrictions that lead to the different cases: the Paley graphs, the Van Lint-Schrijver graphs and the Peisert graphs. We also discuss the Paley graphs in some detail and provide a table with small strongly regular power residue graphs. The penultimate section is dedicated to graphs related to the action of the alternating group Alt(5) and the symmetric group Sym(4) on a projective line. In the last section, we review strongly regular graphs constructed from bent functions.
This chapter collects constructions of strongly regular graphs related to some combinatorial setting, where the starting point is not a group. It discusses Hadamard and conference matrices, (mutually orthogonal) Latin squares, symmetric designs, transversal 3-designs, quasi-symmetric designs (including a table of exceptional parameter sets for such designs with up to 100 points, and we review and prove some results ruling out certain parameter sets of those), partial geometries (including a full proof of Bruck’s and Bose’s sufficient conditions for a graph to be the point graph of a partial geometry, and of Neumaier’s ‘claw bound’), semi-partial geometries and partial quadrangles, (regular) two-graphs, pseudo-cyclic association schemes, and spherical designs. We also briefly discuss the t-vertex condition, asymptotic and randomness properties, the chromatic number and index,and directed strongly regular graphs.