To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sink flow boundary layers on smooth and rough walls were studied experimentally. In all cases a turbulent, zero-pressure-gradient boundary layer was subject to acceleration with K = 3.2 × 10–6, which suppressed the turbulence in the outer region and produced conditions similar to those in turbulent sink flow cases with lower K. In the smooth-wall case, after the momentum thickness Reynolds number had dropped to about 600, the near-wall turbulence then dropped, resulting in relaminarisation. In the rough-wall cases, the near-wall turbulence was sustained in spite of the strong favourable pressure gradient, and relaminarisation did not occur. A temporary equilibrium appears to occur that is similar to that seen with lower K, in spite of the ratio of the boundary-layer thickness to the roughness height dropping to less than 5. Mean velocity and Reynolds stress profiles, quadrant analysis and turbulence spectra are used to show the development of the boundary layer in response to the pressure gradient and the differences between the rough- and smooth-wall cases. This is believed to be the first study to consider the spatial evolution of constant-K rough-wall boundary layers with K large enough to cause relaminarisation in the smooth-wall case.
Accurate prediction of nondispatchable renewable energy sources is essential for grid stability and price prediction. Regional power supply forecasts are usually indirect through a bottom-up approach of plant-level forecasts, incorporate lagged power values, and do not use the potential of spatially resolved data. This study presented a comprehensive methodology for predicting solar and wind power production at a country scale in France using machine learning models trained with spatially explicit weather data combined with spatial information about production sites’ capacity. A dataset is built spanning from 2012 to 2023, using daily power production data from Réseau de Transport d’Electricité (the national grid operator) as the target variable, with daily weather data from ECMWF Re-Analysis v5, production sites capacity and location, and electricity prices as input features. Three modeling approaches are explored to handle spatially resolved weather data: spatial averaging over the country, dimension reduction through principal component analysis, and a computer vision architecture to exploit complex spatial relationships. The study benchmarks state-of-the-art machine learning models as well as hyperparameter tuning approaches based on cross-validation methods on daily power production data. Results indicate that cross-validation tailored to time series is best suited to reach low error. We found that neural networks tend to outperform traditional tree-based models, which face challenges in extrapolation due to the increasing renewable capacity over time. Model performance ranges from 4% to 10% in normalized root-mean-squared error for midterm horizon, achieving similar error metrics to local models established at a single-plant level, highlighting the potential of these methods for regional power supply forecasting.
A new species of parasitic isopod of the genus Ovobopyrus is described from one parasitized specimen of the snapping shrimp Alpheus carlae, collected from the state of Pernambuco, northeastern Brazil. It is the second species of the genus and the first record of the genus from Brazil. The adult female of Ovobopyrus odoya sp. nov. is diagnosed by having the head produced into small anterolateral projections: antennule with three articles; maxilliped subquadratic with a non-articulated palp bearing nine long setae, oostegite 1 having a digitate ridge with five small lobes, carpi of all pereopods with tufts of setae distally, and terminal pleomere bilobed. A comparative table, an identification key, and a distribution map for species of the genus are provided. In addition, an identification key for all Bopyrinae genera from Brazil is also provided.
Refraction is the predominant mechanism causing spatially inhomogeneous surface gravity wave fields. However, the complex interplay between depth- and current-induced wave refraction remains poorly understood. Assuming weak currents and slowly varying bathymetry, we derive an analytical approximation to the wave ray curvature, which is validated by an open-source ray tracing framework. The approximation has the form of linear superposition of a current- and a depth-induced component, each depending on the gradients in the ambient fields. This separation enables quantification of their individual and combined contributions to refraction. Through analysis of a few limiting cases, we demonstrate how the sign and magnitude of these components influence the wave refraction, and identify conditions where they either amplify or counteract each other. We also identify which of the two plays a dominant role. These findings provide physically resolved insights into the influence of current and depth gradients on wave propagation, and are relevant for applications related to remote sensing and coastal wave forecasting services.
The presence of salt in seawater significantly affects the melt rate and morphological evolution of ice. This study investigates the melting process of a vertical cylinder in saline water using a combination of laboratory experiments and direct numerical simulations. The two-dimensional (2-D) direct numerical simulations and three-dimensional (3-D) experiments achieve thermal Rayleigh numbers up to $\textit{Ra}_{T}= \mathcal{O} (10^{9} )$ and saline Rayleigh numbers up to $\textit{Ra}_{S}=\mathcal{O} (10^{12} )$. Some 3-D simulations of the vertical ice cylinder are conducted at $\textit{Ra}_{T}= \mathcal{O} (10^{5} )$ to confirm that the results in 2-D simulations are qualitatively similar to those in 3-D simulations. The mean melt rate exhibits a non-monotonic relationship with ambient salinity. With increasing salinity, the mean melt rate initially decreases towards the point where thermal and saline effects balance, after which it increases again. Based on the ambient salinity, the flow can be categorised into three regimes: temperature-driven flow, salinity-driven flow and thermal-saline competing flow. In the temperature-driven and competing flow regimes, we find that the mean melt rate follows a $\textit{Ra}_{T_d}^{1/4}$ scaling, where the subscript $d$ denotes a response parameter. In contrast, in the salinity-driven flow regime, we see a transition from a $\textit{Ra}_{T_d}^{1/4}$ to a $\textit{Ra}_{T_d}^{1/3}$ scaling. Additionally, the mean melt rate follows a $\textit{Ra}_{S_d}^{1/3}$ scaling in this regime. The ice cylinder develops distinct morphologies in different flow regimes. In the thermal-saline competing flow regime, distinctive scallop (dimpled) patterns emerge along the ice cylinder due to the competition between thermal buoyancy and saline buoyancy. We observe these scallop patterns to migrate downwards over time, due to local differences in the melt rate, for which we provide a qualitative explanation.
Transient growth mechanisms operating on streaky shear flows are believed important for sustaining near-wall turbulence. Of the three individual mechanisms present – Orr, lift-up and ‘push over’ – Lozano-Duran et al. 2021 (J. Fluid Mech.914, A8) have recently observed that both Orr and push over need to be present to sustain turbulent fluctuations given streaky (streamwise-independent) base fields whereas lift-up does not. We show here, using Kelvin’s model of unbounded constant shear augmented by spanwise-periodic streaks, that this is because the push-over mechanism can act in concert with a Orr mechanism based upon the streaks to produce much-enhanced transient growth. The model clarifies the transient growth mechanism originally found by Schoppa & Hussain (2002 J. Fluid Mech.453, 57–108) and finds that this is one half of a linear instability mechanism centred at the spanwise inflexion points observed originally by Swearingen & Blackwelder (1987 J. Fluid Mech.182, 255–290). The instability and even transient growth acting on its own are found to have the correct nonlinear feedback to generate streamwise rolls which can then re-energise the assumed streaks through lift-up indicating a sustaining cycle. Our results therefore support the view that, while lift-up is believed central for the roll-to-streak regenerative process, it is Orr and push-over mechanisms that are both key for the streak-to-roll regenerative process in near-wall turbulence.
The effect of uniform wall suction on compressible Görtler vortices excited by free stream vortical disturbances is studied via asymptotic and numerical methods. The flow is described by the boundary-region framework, written and solved herein for non-similar boundary layers. The suction, applied downstream of an impermeable region, reduces the amplitude of steady and unsteady Görtler vortices. The vortices are attenuated more when the boundary layer has reached the asymptotic-suction condition than when it is streamwise-dependent. The impact of suction weakens as the free stream Mach number increases. As the boundary layer becomes thinner, the exponential growth of the vortices is prevented because the disturbance spanwise pressure gradient and spanwise viscous diffusion are inhibited. The flow is described by the boundary-layer equations in this case, for which the wall-normal momentum equation is uninfluential at leading order and the curvature effects responsible for the inviscid pressure-centrifugal imbalance are therefore negligible. The influence of unsteadiness weakens as suction intensifies because, in the limit of a thin boundary layer, the boundary-region solution simplifies to a regular-perturbation series whose first terms are described by the steady boundary-layer equations. Suction broadens the stability regions and may favour the presence of oblique Tollmien–Schlichting waves at the expense of more energetic Görtler vortices for relatively high frequencies and moderate Mach numbers.
The breakup of viscous liquid threads is governed by a complex interplay of inertial, viscous and capillary stresses. Theoretical predictions near the point of breakup suggest the emergence of a finite-time singularity, leading to universal power laws describing the breakup, characterised by a universal prefactor. Recent stability analyses indicate that, due to the presence of complex eigenvalues, achieving similarity may only be possible through time-damped oscillations, making it unclear when and how self-similar regimes are reached for both visco-inertial and viscous regimes. In this paper, we combine experiments with unprecedented spatio-temporal resolution and highly resolved numerical simulations to investigate the evolution of the liquid free surface during the pinching of a viscous capillary bridge. We experimentally show for the first time that, for viscous fluids the approach to the self-similar solution is composed of a large overshoot of the instantaneous shrinking speed before the system converges to the nonlinear pinch-off similarity solution. In the visco-inertial case, the convergence to the stable solution is oscillatory, whereas in the viscous case, the approach to singularity is monotonic. While our experimental and numerical results are in good agreement in the viscous regime, systematic differences emerge in the visco-inertial regime, potentially because of effects such as polymer polydispersity, which are not incorporated into our numerical model.
We analyse direct numerical simulations of homogeneous, forced, stably stratified turbulence to study how the pressure–strain and pressure scrambling terms are modified as stability is increased from near neutral to strongly stratified conditions. We decompose the pressure into nonlinear and buoyancy components, and find that the buoyancy part of the pressure–strain correlation changes sign to promote large-scale anisotropy at strong stability, unlike the nonlinear component, which always promotes large-scale isotropy. The buoyancy component of the pressure scrambling term is positive semidefinite and increases monotonically with stability. As its magnitude becomes greater than the nonlinear component (which is negative), the overall scrambling term generates buoyancy flux at very strong stability. We apply quadrant analysis (in the pressure-gradient space) to these correlations to study how contributions from the four quadrants change with stability. Furthermore, we derive exact relationships for the volume-averaged buoyancy components of these correlations which reveal (i) the buoyancy component of the pressure–strain correlation involves a weighted sum of the vertical buoyancy flux cospectrum, so counter-gradient buoyancy fluxes contribute to enhanced anisotropy by transferring vertical kinetic energy into horizontal kinetic energy; (ii) the buoyancy component of the pressure scrambling term involves a weighted sum of the potential energy spectrum; (iii) the weighting factor accentuates contributions from layered motions, which are a prominent feature of strongly stratified flows. These expressions apply generally to all homogeneous stratified flows independent of forcing and across all stability conditions, explaining why these effects have been observed for both forced and sheared stably stratified turbulence simulations.
Vapour-driven solutal Marangoni effects have been studied extensively due to their potential applications, including mixing, coating, and droplet transport. Recently, the absorption of highly volatile organic liquid molecules into water droplets, which drives Marangoni effects, has gained significant attention due to its intricate and dynamic physical behaviours. To date, steady-state scenarios have been considered mainly by assuming the rapid establishment of vapour–liquid equilibrium. However, recent studies show that the Marangoni flow arises even under uniform vapour concentration, and requires a considerable time to develop fully. It indicates that the vapour–liquid equilibrium takes longer to establish than was previously assumed, despite earlier studies reporting that vapour molecules instantly adsorb on the interface, highlighting the importance of observing transient flow patterns. Here, we experimentally and numerically investigate time-dependent flow structures throughout the entire lifetime of a droplet in ethanol vapour environments. Under two distinct vapour boundary conditions of uniform and localised vapour distributions, a significant flow structure change consistently occurs within the droplet. The time-varying ethanol vapour mass flux from numerical simulation reveals that the flow transition is caused by the high vapour absorption flux at the droplet contact line, due to the geometric singularity there. Based on the detailed analysis of the surface tension gradient along the droplet interface, we identify that the flow transition occurs before and after the vapour–liquid equilibrium is achieved at the droplet contact line, which induces the flow direction change near the contact line.
This paper presents an analytical method for modelling the acoustic field radiation from a semi-infinite elliptic duct in the presence of uniform subsonic flow. In contemporary aircraft design, elliptic ducts play crucial roles as inlets for advanced blended wing body configurations owing to their capacity to maximise the pre-compression effect of the fuselage and enhance the stealth performance of aircraft. The method uses Mathieu functions to describe the incident and scattered sound in the elliptic cylindrical coordinates. An analytical Wiener–Hopf technique is developed in this work to derive near- and far-field solutions. Numerical simulations based on a finite element method are conducted to validate the accuracy of the analytical method, revealing a strong correspondence with analytical predictions. A parametric study is conducted to explore the influence of the elliptic cross-section shape on noise directivity. Moreover, we investigate reflections within the duct via an extended derivation of the analytical model. The proposed method can be used to examine the acoustic characteristics of elliptic ducts with inflow mean flows, which holds relevance for noise control and optimisation of turbofan engine inlets and blended wing body applications.
Secondary fragmentation of an impulsively accelerated drop depends on fluid properties and velocity of the ambient flow. The critical Weber number $(\mathit{We}_{cr})$, the minimum Weber number at which a drop undergoes non-vibrational breakup, depends on the density ratio $(\rho )$, the drop $(\mathit{Oh}_d)$ and the ambient $(\mathit{Oh}_o)$ Ohnesorge numbers. The current study uses volume-of-fluid based interface-tracking multiphase flow simulations to quantify the effect of different non-dimensional groups on the threshold at which secondary fragmentation occurs. For $\mathit{Oh}_d \leqslant 0.1$, a decrease in $\mathit{Oh}_d$ was found to significantly influence the breakup morphology, plume formation and $\mathit{We}_{cr}$. The balance between the pressure difference between the poles and the periphery, and the shear stresses on the upstream surface, was found to be controlled by $\rho$ and $\mathit{Oh}_o$. These forces induce flow inside the initially spherical drop, resulting in deformation into pancakes and eventually the breakup morphology of a forward/backward bag. The evolution pathways of the drop morphology based on their non-dimensional groups have been charted. With inclusion of the data from the expanded parameter space, the traditional $\mathit{We}_{cr}-\mathit{Oh}_d$ diagram used to illustrate the dependence of the critical Weber number on $\mathit{Oh}_d$ was found to be inadequate in predicting the minimum initial $\mathit{We}$ required to undergo fragmentation. A new non-dimensional parameter $C_{\textit{breakup}}$ is derived based on the competition between the forces driving the drop deformation and the forces resisting the drop deformation. Tested using available experimental data and current simulations, $C_{\textit{breakup}}$ is found to be a robust predictor for the threshold of drop fragmentation.
While flow confinement effects on a shear layer of an one-sided or submerged vegetation array’s interface have been widely studied, turbulent interactions between shear layers in channels with vegetation on both sides remain unclear. This study presents laboratory experiments investigating flow adjustments and turbulent interaction within a symmetrical vegetation–channel–vegetation system, considering varying array widths and densities. In the outer shear layer, the shear stress is primarily balanced by the pressure gradient. As the array extends laterally, the outer penetration of the shear layer reduces from a fully developed thickness to the half-width of the open region, resulting in flow confinement. Flow confinement enhances the pressure gradient, which increases the interior velocity and shear stress at the interface. Despite the time-averaged shear stress being zero at the centreline when the shear layer is confined, the shear instabilities from both sides interact, producing significant turbulent events at the centreline with equal contributions from each side. Furthermore, the two parallel vortex streets self-organised and created a wave response with a $\pi$-radian phase shift , where alternating vortex cores amplify the pressure gradient, intensifying coherent structures and facilitating momentum exchange across the channel centreline. Although the turbulent intensity is enhanced, the decreased residence time for turbulent flow events may limit transport distance. Overall, the shear layer that develops on one interface acts as an additional resistance to shear turbulence on the other interface, leading to a more rapid decline of shear stress in the open region, despite a higher peak at the interface.
In compressible turbulent boundary layers (CTBLs), the strong Reynolds analogy (SRA) refers to a set of quantitative relationships between temperature and velocity fluctuations. The essence of the SRA is the linear relationship between these fluctuations in large-scale motions. We investigate the transport processes of the second-order statistical moments associated with temperature and velocity fluctuations to reveal the physical mechanisms underlying this linear correlation. An important finding is that there exists a strong linear mechanism between the turbulent production of velocity and temperature fluctuations. Nonlinear mechanisms, such as the viscous-thermal dissipation, the work contribution, and particularly the pressure term, lead to the failure of the existing SRAs in the outer layer. Based on the above findings, a refined SRA (RSRA) is proposed, which better describes the quantitative relation between the temperature and velocity fluctuation intensities. An approximate expression for the turbulent Prandtl number under different Mach numbers and wall-cooling conditions is derived with the newly proposed RSRA. The relations proposed in this paper are validated through the direct numerical simulation data of flat-plate zero-pressure-gradient CTBLs at different Mach numbers and wall temperatures.
Layer formation can occur within stratified fluids, often associated with the effect of ‘double diffusion’ where the fluid buoyancy depends on two components with differing molecular diffusivities (e.g. heat and salt in seawater). However, since layering also occurs in one-component stratified fluids, the generation mechanism for layers is often unclear. In this paper, we present a framework that unifies multiple-layer generation mechanisms across both one- and two-component stratified fluids. We demonstrate how these mechanisms can be assessed using simulations of double-diffusive intrusions. Our simulations illustrate the importance of the negative turbulent diffusivity for buoyancy in contributing to layer formation.
We introduce a novel approach to derive compressibility corrections for Reynolds-averaged Navier–Stokes (RANS) models. Using this approach, we derive variable-property corrections for wall-bounded flows that take into account the distinct scaling characteristics of the inner and outer layers, extending the earlier work of Otero Rodriguez et al. (IntlJ. Heat Fluid Flow, 73, 2018, 114–123). We also propose modifying the eddy viscosity to account for changes in the near-wall damping of turbulence due to intrinsic compressibility effects. The resulting corrections are consistent with our recently proposed velocity transformation (Hasan et al. Phys. Rev. Fluids, 8, 2023, L112601) in the inner layer and the Van Driest velocity transformation in the outer layer. Furthermore, we address some important aspects related to the modelling of the energy equation, primarily focusing on the turbulent Prandtl number and the modelling of the source terms. Compared with the existing state-of-the-art compressibility corrections, the present corrections, combined with accurate modelling of the energy equation, lead to a significant improvement in the results for a wide range of turbulent boundary layers and channel flows. The proposed corrections have the potential to enhance modelling across a range of applications, involving low-speed flows with strong heat transfer, fluids at supercritical pressures, and supersonic and hypersonic flows.
In this paper a part of a new multi-proxy results obtained from the Kotoń landslide fen deposits (the Beskid Makowski Mountains, the Outer Western Carpathians, S Poland), including loss on ignition analysis, plant macrofossil analysis and radiocarbon dating is presented. The aim of the study was to verify whether the reconstructed local palaeoecological stages of the Kotoń fen development could be correlated with the Bølling-Older Dryas-Allerød sequence and to verify whether the rarely recognised short GI-1d/Older Dryas climate cooling affected the regional and local palaeoecological record of the Kotoń deposits. Results showed that four palaeoecological stages of development (poor-in-vegetation waterbody, waterbody with aquatic succession, calcareous extremely rich fen and moderately rich fen) determined for the Kotoń landslide fen deposits between ca. 14,600–13,500 cal BP stay in agreement with the earlier pollen division of the Kotoń deposits and with the extraregional chronology of the Greenland ice cores. The influence of GI-1d/Older Dryas climate cooling on the surrounding and regional vegetation was recognised for the deposits of Kotoń and other localities in a form of open-space habitats with herbs, shrubs and sparse tree stands, e.g. steppe-tundra, reflecting the cold and dry climatic conditions. In case of local vegetation and palaeohydrological changes, the Older Dyas climatic oscillation was recorded as a shallowing of the existing palaeo-waterbodies. Although for other localities this process was attributed to the dry climatic conditions, in case of Kotoń site more detail multi-proxy research is necessary to distinguish the climatic impact from the autogenic succession.
Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing method that uses repeated radar scans of the Earth's solid surface to measure relative deformation at centimeter precision over a wide swath. It has revolutionized our understanding of the earthquake cycle, volcanic eruptions, landslides, glacier flow, ice grounding lines, ground fluid injection/withdrawal, underground nuclear tests, and other applications requiring high spatial resolution measurements of ground deformation. This book examines the theory behind and the applications of InSAR for measuring surface deformation. The most recent generation of InSAR satellites have transformed the method from investigating 10's to 100's of SAR images to processing 1000's and 10,000's of images using a wide range of computer facilities. This book is intended for students and researchers in the physical sciences, particularly for those working in geophysics, natural hazards, space geodesy, and remote sensing. This title is also available as Open Access on Cambridge Core.
The metamorphic history of the eastern Beartooth Mountains of Montana in the northern Archean Wyoming Province is challenging to establish given the multi-staged nature of metamorphism in the area and the prevalence of metamorphic overprinting. A petrologically illustrative cordierite-orthopyroxene xenolith in ∼2.80 Ga calc-alkaline granitic igneous rocks exhibits a mineral assemblage responsive to multiple metamorphic overprints. Cordierite-orthopyroxene and/or -orthoamphibole rocks (CORs) have mineral assemblages that provide instructive information on the metamorphic development of the terranes and the processes that form their protoliths. This investigation combines detailed petrographic and mineral-chemical investigations with petrological modelling of this COR locality, to establish important aspects of the local pressure-temperature (P-T) history.
The COR lithology, found in the Quad Creek locality of the study area, preserves textural evidence for three discrete metamorphic events consisting of a granulite-facies event (M1) that is overprinted by two, lower-grade hydration events: an upper amphibolite-facies event (M2) and a greenschist-facies event (M3). The M1 event is characterised by the mineral assemblage rutile-biotite-orthopyroxene-cordierite-quartz-melt ± sillimanite that equilibrated at ∼0.60 GPa and 775–815°C. M2 overprinting is marked by partial hydration of orthopyroxene to anthophyllite, crystallisation of plagioclase from a putative melt and ilmenite–rutile co-existence. The final metamorphic stage, M3, is marked by local hydration of orthorhombic inosilicates to talc and cordierite to pinite (chlorite). Estimates of M2 P-T conditions suggest development below ∼0.40 GPa at 615–725°C, whereas M3 probably developed below 0.40 GPa and 500–600°C. The resultant clockwise cordierite-orthopyroxene P-T path resembles modelled metamorphic P-T paths in proximal xenolithic lithologies. This interpretive P-T history is consistent with metamorphism in an Archean continental arc subduction zone with M1 metamorphism due to compression and tectonic burial, M2 due to hydration following, or coeval, with emplacement of voluminous ∼2.80 Ga plutons and M3 due to later low-T fluids. Although not conclusive, the Quad Creek COR was probably derived from a metasomatised basaltic protolith from the Archean seafloor, a comparable mode of origin to many COR occurrences worldwide.