To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a dual-band dual-circularly polarized (CP) patch antenna with integrated coupling structure and stepped impedance resonators (SIRs) is proposed. The tapped-line coupling generates $0^{\circ}/180^{\circ}$ phase in two frequency bands, while the parallel coupled-line coupling exhibits an inherent $90^{\circ}$ phase delay in two frequency bands. The two-way coupling structure generates the $\pm90^\circ$ phase shift enabling dual-CP, eliminate the need for additional phase shifters. Then, the SIRs excite the two orthogonal modes of the radiation patch while concurrently matching the impedance between the antenna and the input port, eliminating the need for an additional matching network. Finally, the radiation patch and SIRs are integrated into a complete structure, and a T- junction is used to connect the two branches. Compared to traditional design, the proposed antenna greatly reduces the complexity and difficulty. The development stages are discussed in detail. The proposed design is demonstrated through prototype fabrication and characterization.
This paper presents a broadband rectifier based on GaN high electron mobility transistor (HEMT). The continuous class-B/J rectifier operation mode is analyzed in detail. The relationship between the continuous mode class-B/J rectification efficiency and the output capacitance Cout and the on-state resistance Ron is built and the rectification model is firstly presented. Then, the available impedance design space can be determined based on the rectification efficiency model. Considering the package parameters of the CGH40010F, design space at the package plane has been presented. Moreover, a broadband phase tuning network (PTN) is adjusted to satisfy this impedance space. Thus, a broadband transistor-based rectifier can be designed using the continuous class-B/J mode and the PTN. For validation, a rectifier working in 2.4–3.3 GHz was fabricated using CGH40010F. The rectification efficiency varies from 66% to 78% when RF input power is 10 W. Compared with other transistor-based rectifiers, the presented rectifier has a competitive working bandwidth.
Linear Temporal Logic (LTL) offers a formal way of specifying complex objectives for Cyber-Physical Systems (CPS). In the presence of uncertain dynamics, the planning for an LTL objective can be solved by model-free reinforcement learning (RL). Surrogate rewards for LTL objectives are commonly utilized in model-free RL for LTL objectives. In a widely adopted surrogate reward approach, two discount factors are used to ensure that the expected return (i.e., the cumulative reward) approximates the satisfaction probability of the LTL objective. The expected return then can be estimated by methods using the Bellman updates such as RL. However, the uniqueness of the solution to the Bellman equation with two discount factors has not been explicitly discussed. We demonstrate, through an example, that when one of the discount factors is set to one, as allowed in many previous works, the Bellman equation may have multiple solutions, leading to an inaccurate evaluation of the expected return. To address this issue, we propose a condition that ensures the Bellman equation has the expected return as its unique solution. Specifically, we require that the solutions for states within rejecting bottom strongly connected components (BSCCs) be zero. We prove that this condition guarantees the uniqueness of the solution, first for recurrent states (i.e., states within a BSCC) and then for transient states. Finally, we numerically validate our results through case studies.
In the standard picture of fully developed turbulence, highly intermittent hydrodynamic fields are nonlinearly coupled across scales, where local energy cascades from large scales into dissipative vortices and large density gradients. Microscopically, however, constituent fluid molecules are in constant thermal (Brownian) motion, but the role of molecular fluctuations in large-scale turbulence is largely unknown, and with rare exceptions, it has historically been considered irrelevant at scales larger than the molecular mean free path. Recent theoretical and computational investigations have shown that molecular fluctuations can impact energy cascade at Kolmogorov length scales. Here, we show that molecular fluctuations not only modify energy spectrum at wavelengths larger than the Kolmogorov length in compressible turbulence, but also significantly inhibit spatio-temporal intermittency across the entire dissipation range. Using large-scale direct numerical simulations of computational fluctuating hydrodynamics, we demonstrate that the extreme intermittency characteristic of turbulence models is replaced by nearly Gaussian statistics in the dissipation range. These results demonstrate that the compressible Navier–Stokes equations should be augmented with molecular fluctuations to accurately predict turbulence statistics across the dissipation range. Our findings have significant consequences for turbulence modelling in applications such as astrophysics, reactive flows and hypersonic aerodynamics, where dissipation-range turbulence is approximated by closure models.
Deformable microchannels emulate a key characteristic of soft biological systems and flexible engineering devices: the flow-induced deformation of the conduit due to slow viscous flow within. Elucidating the two-way coupling between oscillatory flow and deformation of a three-dimensional (3-D) rectangular channel is crucial for designing lab-on-a-chip and organ-on-a-chip microsystems and eventually understanding flow–structure instabilities that can enhance mixing and transport. To this end, we determine the axial variations of the primary flow, pressure and deformation for Newtonian fluids in the canonical geometry of a slender (long) and shallow (wide) 3-D rectangular channel with a deformable top wall under the assumption of weak compliance and without restriction on the oscillation frequency (i.e. on the Womersley number). Unlike rigid conduits, the pressure distribution is not linear with the axial coordinate. To validate this prediction, we design a polydimethylsiloxane-based experimental platform with a speaker-based flow-generation apparatus and a pressure acquisition system with multiple ports along the axial length of the channel. The experimental measurements show good agreement with the predicted pressure profiles across a wide range of the key dimensionless quantities: the Womersley number, the compliance number and the elastoviscous number. Finally, we explore how the nonlinear flow–deformation coupling leads to self-induced streaming (rectification of the oscillatory flow). Following Zhang and Rallabandi (J. Fluid Mech., vol. 996, 2024, p. A16), we develop a theory for the cycle-averaged pressure based on the primary problem’s solution, and we validate the predictions for the axial distribution of the streaming pressure against the experimental measurements.
Hand gesture recognition (HGR) has gained significant attention in human-computer interaction, enabling touchless control in various domains, such as virtual reality, automotive systems, and healthcare. While deep learning approaches achieve high accuracy in gesture classification, their lack of interpretability hinders transparency and user trust in critical applications. To address this, we extend MIRA, an interpretable rule-based HGR system, with a novel gesture onset detection method that autonomously identifies the start of a gesture before classification. Our onset detection approach achieves 90.13% accuracy on average, demonstrating its robustness across users. By integrating signal processing techniques, MIRA enhances interpretability while maintaining real-time adaptability to dynamic environments. Additionally, we introduce a background class, enabling the system to differentiate between gesture and non-gesture frames and expand the dataset with new users and recordings to improve generalization. We further analyze how feature diversity affects performance, showing that low diversity can suppress personalization due to early misclassifications. Using a foundational and personalized rule framework, our approach correctly classifies up to 94.9% of gestures, reinforcing the impact of personalization in rule-based systems. These findings demonstrate that MIRA is a robust and interpretable alternative to deep learning models, ensuring transparent decision-making for real-world radar-based gesture recognition.
We performed three-dimensional simulations to study the motion and interaction of microswimmers (pulling- and pushing-type squirmers) and spheres for Reynolds numbers ranging from 0.01 to 1 under conditions in which all particles were axially aligned with each other. We show that pullers are attractive and pushers are repulsive, in terms of the pressure at the front and rear of the squirmers. Correspondingly, the pullers always come close to each other and form a string that swims slightly faster than does a single puller. A possible reason for this finding is discussed. In contrast, whether a leading puller touches a trailing pusher depends primarily on its strength. When the two have similar strengths, they come into contact and form a stable doublet with finite inertia. The speed of the doublet is substantially higher than that of a single pusher owing to the additional force stemming from the fore and aft pressure differences of the doublet. We also demonstrate how a leading pusher interacts with a trailing puller, which is quite different. In contrast, a sphere can be directly or hydrodynamically ‘pushed’ to run by a puller or a pusher. In particular, we reveal that the sphere exhibits the highest speed when ‘pulled’ by a leading puller and ‘pushed’ by a trailing pusher simultaneously. Grouping behaviours reflect the interacting nature of the microswimmers and spheres from different aspects. A bunch of pushers/pullers eventually appears in pairs or forms a string depending on the Reynolds number, similar to groups of pushers/spheres and pullers/spheres.
This study investigates droplet impact on elastic plates using a two-phase lattice Boltzmann method in both two-dimensional (2-D) and three-dimensional (3-D) configurations, with a focus on rebound dynamics and contact time. The 2-D simulations reveal three distinct rebound modes – conventional bounce, early bounce and rim rising – driven by fluid–structure interaction. Among them, the early bounce mode uniquely achieves a significant reduction in contact time, occurring only at moderate plate oscillation frequency. Momentum analysis shows a non-monotonic relationship between vertical momentum transfer and rebound efficiency: increased momentum does not necessarily promote rebound if it concentrates in a central jet, which contributes minimally to lift-off. This introduces a novel rebound mechanism governed by momentum distribution morphology rather than total magnitude. A theoretical model treating the droplet–plate system as coupled oscillators is developed to predict contact time in the early bounce regime, showing good agreement with numerical results. The mechanism and model are further validated through fully 3-D simulations, confirming the robustness of the findings.
Plane unsteady potential flows of an ideal incompressible fluid with a free boundary are considered in the absence of external forces and surface tension. At the initial time, the flow occupy a wedge with an angle at the apex. For different initial flow velocities and values of the angle at the vertex, a family of exact solutions is found. A method for finding solutions based on reducing the boundary-value problems to systems of ordinary differential equations.
In this study, a metasurface (MS) polarization converter combined with a two-port dielectric antenna is constructed and studied. The feeding configuration, which consists of a printed line connected to an aperture, offers built-in filtering capabilities. In addition to converting linear to circular polarization between 2.49 and 3.25 GHz, the suspended MS layer enhances port isolation to less than −20 dB. In addition, the suggested radiator’s |S11| is projected using the Random Forest and XGBoost machine learning (ML) models, which demonstrate satisfactory agreement with simulation data. The antenna effectively functions over 2.33–3.35 GHz, demonstrating that it is a leading contender for sub-6 GHz 5G communication systems. Fabricated measurements support both simulation and ML predictions.
Hysteresis in the transition between regular reflection (RR) and Mach reflection (MR) has been predicted theoretically and numerically for decades, yet successful experimental demonstrations have remained limited to wedge-angle-variation-induced hysteresis. This work presents the first successful experimental demonstration of Mach-number-variation-induced hysteresis. Utilising a newly developed continuously variable Mach 5–8 wind-tunnel nozzle, Mach-sweep experiments were conducted on a pair of wedges at three different angles ($25^{\circ }$, $27^{\circ }$ and $28^{\circ }$). A stable RR was first established at Mach 7 within the dual-solution domain for each angle, and then the Mach number was decreased to 5. For the $27^{\circ }$ and $28^{\circ }$ cases, transition from RR to MR was observed at Mach 5.3 and 5.9, respectively, during the downward Mach sweep, and the MR state persisted throughout the upward sweep back to Mach 7. During the $25^{\circ }$ case, a stable RR was maintained throughout the entire Mach sweep, prompting further experiments into the effect of free-stream disturbances on the stability of the RR state. Preliminary results revealed a free-stream-disturbance-induced hysteresis and that the RR state is metastable with potential stochastic behaviour.
A heaving and pitching wing encountering effective angle-of-attack perturbations at the Reynolds numbers of 2000 and 20 000 is numerically studied by using an immersed boundary–lattice Boltzmann method. The perturbations are introduced as an abrupt heaving or pitching motion superposed on the baseline motion. It is found that the lift increment scales with the increase in the perturbation effective angle of attack, especially during the heaving perturbation. The pitching perturbation is more likely to disrupt this scaling due to the transition of the leading-edge vortex (LEV) detachment mechanism, where the detachment mechanism of the LEV transitions from bluff-body shedding dominant to vorticity layer eruption dominant. Despite the same variation in the effective angle of attack for the heaving and pitching perturbations, vorticity layer eruption is more likely to occur under the fast pitching perturbation. When the Reynolds number is increased to 20 000, the time histories of aerodynamic force are similar to those at the Reynolds number of 2000. Moreover, the boundary layer under the LEV is more resistant to the adverse pressure gradient, leading to greater variability in vorticity layer eruption.
Transonic buffet is a complex and strongly nonlinear unstable flow sensitive to variations in the incoming flow state. This poses great challenges for establishing accurate-enough reduced-order models, limiting the application of model-based control strategies in transonic buffet control problems. To address these challenges, this paper presents a time-variant modelling approach that incorporates rolling sampling, recursive parameter updating and inner iteration strategies under dynamic incoming flow conditions. The results demonstrate that this method successfully overcomes the difficulty in designing appropriate training signals and obtaining unstable steady base flow. Additionally, it improves the global predictive capability and identification efficiency of linear models for nonlinear flow-system responses by more than one order of magnitude. Furthermore, two adaptive control strategies – minimum variance control and generalised predictive control – are validated as effective based on the time-variant reduced-order model through numerical simulations of the transonic buffet flow over the NACA 0012 aerofoil. The adaptive controllers effectively regulate the unstable eigenvalues of the flow system, achieving the desired control outcomes. They ensure that the shock wave buffet phenomenon does not recur after control is applied, and that the actuator deflection, specifically the trailing-edge flap, returns to zero. Moreover, the control results further confirm the global instability essence of transonic buffet flow from a control perspective, thereby deepening the cognition of this nonlinear unstable flow.
The low Reynolds number solution of the wind–wave interaction problem is found in Cimarelli et al. (2023 J. Fluid Mech. vol. 956, A13), to be characterised by a skewed pattern of small-elevation waves on the bottom of a turbulent wind where drag reduction is caused by a wave-induced Stokes sublayer. The inhomogeneous, anisotropic and multiscale phenomena at the basis of this interesting solution are analysed here by means of the generalised Kolmogorov equation. It is found that the large and coherent structures populating the wind are the result of an upward shift of the self-sustaining production mechanisms of turbulence and of intense reverse energy cascade phenomena. The upward shift of production and the intensification of the reverse cascade are recognised to be the result of a periodically distributed pumping of scale energy induced by the pressure field associated with the wave-induced Stokes sublayer. The low dissipative nature of the wind–wave interface region is also investigated and is found to be related to a layering effect generated by the simultaneous presence of wave-induced pressure fluctuations and of wind-induced velocity fluctuations that interact with each other in an incoherent manner. Finally, the theoretical framework provided by the generalised Kolmogorov equation is also used to rigorously define two relevant cross-over scales for the filtering formalism, the shear scale identifying the energy-containing motion and the split energy cascade scale identifying the cross-over between forward and backward cascades. Well-defined quantitative criteria for the definition of spatial resolution and for the selection of turbulence closures in coarse-grained approaches to the wind–wave problem are provided.
We explore the fundamental flow structure of temporally evolving inclined gravity currents with direct numerical simulations. A velocity maximum naturally divides the current into inner and outer shear layers, which are weakly coupled by momentum and buoyancy exchanges on time scales that are much longer than the typical time scale characterising either layer. The outer layer evolves to a self-similar state and can be described by theory developed for a current on a free-slip slope (Van Reeuwijk et al. 2019, J. Fluid Mech., vol. 873, pp. 786–815) when expressed in terms of outer-layer properties. The inner layer evolves to a quasi-steady state and is essentially unstratified for shallow slopes, with flow statistics that are virtually indistinguishable from fully developed open channel flow. We present the classic buoyancy–drag force balance proposed by Ellison & Turner (1959, J. Fluid Mech., vol. 6, pp. 423–448) for each layer, and find that buoyancy forces in the outer layer balance entrainment drag, while buoyancy forces in the inner layer balance wall friction drag. Using scaling laws within each layer and a matching condition at the velocity maximum, the entire flow system can be solved as a function of the slope angle, in good agreement with the simulation data. We further derive an entrainment law from the solution, which exhibits relatively high accuracy across a wide range of Richardson numbers, and provides new insights into the long runout of oceanographic gravity currents on mild slopes.
Understanding the flow behaviour of wet granular materials is essential for comprehending the dynamics of numerous geological and physical phenomena, but remains a significant challenge, especially the transition of these flow regimes. In this study, we perform a series of rotating drum experiments to systematically investigate the dynamic observables and flow regimes of wet mono-dispersed particles. Two typical continuous flows including rolling and cascading regimes are identified and analysed, concentrating on the impact of fluid density and rotation speed. The probability density functions of surface angles, $\theta _{\textit{top}}$ and $\theta _{\textit{lo}w\textit{er}}$, reveal distinct patterns for these two flow regimes. A morphological parameter thus proposed, termed angle divergence, is used to characterise the rolling–cascading regime transition quantitatively. By integrating quantitative observables, we construct the flow phase diagram and flow curve to delineate the transition rules governing these regimes. Notably, the resulting nonlinear phase boundary demonstrates that higher fluid densities significantly enhance the likelihood of the system transitioning into the cascading regime. This finding is further supported by corresponding variations in flow fluctuations. Our results provide new insights into the fundamental dynamics of wet granular matter, offering valuable implications for understanding the complex rheology of underwater landslides and related phenomena.
A spherical cap, lined internally with a surfactant-laden liquid film, is studied numerically as a model of lung alveoli. Large-amplitude oscillations are considered (deep breathing), which may lead to collapse of the surfactant monolayer during compression, with formation of a sub-surface reservoir that replenishes the monolayer during re-expansion. Independent conservation equations are satisfied for the monolayer and the total surface concentration of surfactant and a novel kinetic expression is introduced to model the two-way internal transport with the reservoir. Marangoni stresses, which drive shearing flow, are not significantly hindered by the collapse of the monolayer, unless the latter is singularly stiff. However, volumetric flow rate and wall shear stress exhibit abrupt changes with monolayer collapse, mainly because of the strong modification of capillary stresses. These changes induce complex temporal variability in the epithelial shear, a condition known to stimulate enhanced surfactant secretion. The effect may counterbalance the predicted increase with amplitude in surfactant drift from the alveolar opening, thereby contributing to homeostasis. Nano-particles deposited on the liquid layer are slowly transported by the flow towards the alveolar rim, with exit half-time in order-of-magnitude agreement with in vivo data. Thus, Marangoni stresses are proposed as a key mechanism of alveolar clearance. Both particle displacement speed and surfactant drift from the alveoli are found to vary with solubility, with the former increasing monotonically and the latter exhibiting maximum at intermediate solubilities.
Surface roughness of fairly small (micron-sized) height is known to influence significantly three-dimensional boundary-layer transition. In this paper, we investigate this sensitive effect from the viewpoint that roughness alters the base flow thereby inducing new instabilities. We consider distributed roughness in the form of a wavy wall with its height being taken to be of $\mathit{O} (R^{-1/3 } \delta ^{\ast })$, where the Reynolds number $R$ is defined using the local boundary-layer thickness $\delta ^{\ast }$. Despite having a height much smaller than $\delta ^{\ast }$, the roughness is high enough to induce nonlinear responses. The roughness-distorted boundary-layer flow is characterised by a wall layer (WL) – a thin layer adjacent to the surface – the main layer and a critical layer (CL) – the vicinity of a special position at which a singularity of the Rayleigh equation occurs. The widths of both the WL and CL are of $\mathit{O} (R^{-1/3} \delta ^{\ast })$. Surface roughness alters the base flow significantly, leading to $\mathit{O} (1)$ vorticity distortions in these layers. We show for the first time that the nonlinearly distorted flows in these layers support small-scale local instabilities due to the roughness-induced $\mathit{O} (1)$ vorticities. Two types of modes, CL and WL modes, are identified. The CL modes have short wavelengths and high frequencies, with the spatial and temporal instabilities being governed by essentially the same equation. Thus, we focus on the former, which can be formulated as a linear generalised eigenvalue problem. The WL modes have short wavelengths but $\mathit{O} (1)$ frequencies. The temporal WL mode is governed by a linear eigenvalue problem similar to that for the CL modes, while the spatial WL mode is described by a nonlinear eigenvalue problem. The onset of these small-scale fluctuations could form a crucial step in the transition to turbulence.
The Richtmyer–Meshkov instability (RMI) develops when a planar shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure/entropy/vorticity fields generated by the rippled wavefronts are responsible of the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluid density ratio and compressibilities. In this work we only deal with the situations in which a shock is reflected. Our main goal is to show an explicit, closed form expression of the asymptotic linear velocity of the corrugation at the contact surface, valid for arbitrary Mach number, fluid compressibilities and pre-shock density ratio. An explicit analytical formula (closed form expression) is presented that works quite well in both limits: weak and strong incident shocks. The new formula is obtained by approximating the contact surface by a rigid piston. This work is a natural continuation of J. G. Wouchuk (2001 Phys. Rev. E vol. 63, p. 056303) and J. G. Wouchuk (2025 Phys. Rev. E vol. 111, p. 035102). It is shown here that a rigid piston approximation (RPA) works quite well in the general case, giving reasonable agreement with existing simulations, previous analytical models and experiments. An estimate of the relative error incurred because of the RPA is shown as a function of the incident shock Mach number $M_i$ and ratio of $\gamma $ values at the contact surface. The limits of validity of this approximation are also discussed. The calculations shown here have been done with the scientific software Mathematica. The files used to do these calculations can be retrieved as Supplemental Files to this article.