To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the transport and deposition of inhaled aerosols in a mid-generation, mucus-lined lung airway, with the aim of understanding if and how airborne particles can avoid the mucus and deposit on the airway wall – an outcome that is harmful in case of allergens and pathogens, but beneficial in case of aerosolised drugs. We adopt the weighted-residual integral boundary-layer model of Dietze and Ruyer-Quil (J. Fluid Mech. 762, 2015, 68–109, to describe the dynamics of the mucus–air interface, as well as the flow in both phases. The transport of mucus induced by wall-attached cilia is also considered, via a coarse-grained boundary condition at the base of the mucus. We show that the capillary-driven Rayleigh–Plateau instability plays an important role in particle deposition by drawing the mucus into large annular humps and leaving substantial areas of the wall exposed to particles. We find, counter-intuitively, that these mucus-depleted zones enlarge on increasing the mucus volume fraction. Our simulations are eased by the fact that the effects of cilia and air turn out to be rather simple: the long-term interface profile is slowly translated by cilia and is unaffected by the laminar airflow. The streamlines of the airflow, though, are strongly modified by the non-uniform mucus film, and this has important implications for aerosol entrapment. Particles spanning a range of sizes (0.1–50 microns) are modelled using the Maxey–Riley equation, augmented with Brownian forces. We find a non-monotonic dependence of deposition on size. Small particles diffuse across streamlines due to Brownian motion, while large particles are thrown off streamlines by inertial forces – particularly when air flows past mucus humps. Intermediate-sized particles are tracer-like and deposit the least. Remarkably, increasing the mucus volume need not increase entrapment: the effect depends on particle size, because more mucus produces not only deeper humps that intercept inertial particles, but also larger depleted zones that enable diffusive particles to deposit on the wall.
This paper provides a preliminary investigation into the use of a novel passive aircraft flight loads alleviation device called the Superelastic Monostable Spoiler. The work focuses primarily on understanding the behaviour of such a device and the related loads alleviation performance during dynamic gust events. A number of different design parameters are explored, such as the trigger condition and the activation speed. The main aim of the paper is to define the preliminary operational requirements of such a device in order to guide the future detailed design, which is not addressed here. It was found that the Superelastic Monostable Spoiler could potentially provide loads alleviation performance comparable with typical gust loads alleviation technologies currently used in modern civil aviation based on the use of ailerons and spoilers.
Time-varying flow-induced forces on bodies immersed in fluid flows play a key role across a range of natural and engineered systems, from biological locomotion to propulsion and energy-harvesting devices. These transient forces often arise from complex, dynamic vortex interactions and can either enhance or degrade system performance. However, establishing a clear causal link between vortex structures and force transients remains challenging, especially in high-Reynolds-number nominally three-dimensional flows. In this study, we investigate the unsteady lift generation on a rotor blade that is impulsively started with a span-based Reynolds number of 25 500. The lift history from this direct-numerical simulation reveals distinct early-time extrema associated with rapidly evolving flow structures, including the formation, evolution and breakdown of leading-edge and tip vortices. To quantify the influence of these vortical structures on the lift transients, we apply the force partitioning method (FPM) that quantifies the surface pressure forces induced by vortex-associated effects. Two metrics – $Q$-strength and vortex proximity – are derived from FPM to provide a quantitative assessment of the influence of vortices on the lift force. This analysis confirms and extends qualitative insights from prior studies, and offers a simple-to-apply data-enabled framework for attributing unsteady forces to specific flow features, with potential applications in the design and control of systems where unsteady aerodynamic forces play a central role.
Tip leakage noise is one of the least understood noise sources in turbomachinery, arising from the interactions between the tip leakage flow, blade tips and casing boundary layer. This study employs experimental and parametric investigations to systematically identify three key non-dimensional parameters that govern tip leakage noise: the angle of attack $\alpha$, the ratio between the maximum aerofoil thickness and gap size $\tau _{\textit{max}}/e$ and between the gap size and boundary-layer thickness $e/\delta$. These parameters regulate two fluid-dynamic instabilities, vortex shedding and shear-layer roll-up, responsible for the two tip leakage noise sources. Specifically, the first noise source arises when $\tau _{\textit{max}}/e \lt 4$ and with the tip vortex positioned away from the aerofoil surface for $\alpha \geqslant 10^\circ$. The second noise source occurs whenever the tip flow separates at the pressure side edge, with its strength proportional to the lift coefficient, depending on $\alpha$, and diminishing as $e/\delta$ decreases and $\tau _{\textit{max}}/e$ increases. Additionally, a relationship between the first noise source and drag losses is established, demonstrating that these losses are governed by $\alpha$ and $\tau _{\textit{max}}/e$.
Standard quadrotors exhibit limited mobility due to inherent underactuation: they only have four independent control inputs, whereas their position and attitude in space are defined by six degrees of freedom (DOF). Consequently, a quadrotor’s pose cannot track an arbitrary trajectory over time. To address this limitation, a novel actuation concept has been proposed, wherein the quadrotor’s propellers can tilt around their axes relative to the main body–forming a vector quadrotor. To achieve more accurate trajectory tracking tailored to the specific characteristics of this vector quadrotor model, we propose a novel control strategy. First, we integrate special orthogonal group SO(3) theory with model compensation control: SO(3) theory enables accurate modeling of the aircraft’s rotational dynamics, while model compensation control mitigates unmodeled dynamics and external disturbances, thereby ensuring robustness across diverse operating conditions. Second, we introduce the sequential quadratic programming (SQP) method for control allocation; this method not only enables efficient computation of control inputs but also optimises the allocation of control resources, which enhances system performance–particularly in complex manoeuvering scenarios. Finally, we integrate the SO(3)-based controller with the SQP-based control allocation module to form a unified control system. The effectiveness of this proposed approach is validated via simulation results. These results demonstrate improved trajectory tracking accuracy and enhanced robustness against disturbances, thus confirming the potential of our method for practical applications.
We investigate the shape of a tin sheet formed from a droplet struck by a nanosecond laser pulse. Specifically, we examine the dynamics of the process as a function of laser beam properties, focusing on the outstanding puzzle of curvature inversion: tin sheets produced in experiments and state-of-the-art extreme ultraviolet (EUV) nanolithography light sources curve in a direction opposite to previous theoretical predictions. We resolve this discrepancy by combining direct numerical simulations with experimental data, demonstrating that curvature inversion can be explained by an instantaneous pressure impulse with low kurtosis. Specifically, we parametrise a dimensionless pressure width, $ W$, using a raised cosine function and successfully reproduce the experimentally observed curvature over a wide range of laser-to-droplet diameter ratios, $ 0.3 \lt d/D_0 \lt 0.8$. The simulation process described in this work has applications in the EUV nanolithography industry, where a laser pulse deforms a droplet into a sheet, which is subsequently ionised by a second pulse to produce EUV-emitting plasma.
We study the two-dimensional steady-state creeping flow in a converging–diverging channel gap formed by two immobile rollers of identical radius. For this purpose, we analyse the Stokes equation in the streamfunction formulation, i.e. the biharmonic equation, which has homogeneous and particular solutions in the roll-adapted bipolar coordinate system. The analysis of existing works, investigating the particular solutions allowing arbitrary velocities at the two rollers, is extended by an investigation of homogeneous solutions. These can be reduced to an algebraic eigenvalue problem, whereby the associated discrete but infinite eigenvalue spectrum generates symmetric and asymmetric eigenfunctions with respect to the centre line between the rollers. These represent nested viscous vortex structures, which form a counter-rotating chain of vortices for the smallest unsymmetrical eigenvalue. With increasing eigenvalue, increasingly complex finger-like structures with more and more layered vortices are formed, which continuously form more free stagnation points. In the symmetrical case, all structures are mirror-symmetrical to the centre line and with increasing eigenvalues, finger-like nested vortex structures are also formed. As the gap height in the pressure gap decreases, the vortex density increases, i.e. the number of vortices per unit length increases, or the length scales of the vortices decrease. At the same time the rate of decay between subsequent vortices increases and reaches and asymptotic limit as the gap vanishes.
We analyse the process of convective mixing in two-dimensional, homogeneous and isotropic porous media with dispersion. We considered a Rayleigh–Taylor instability in which the presence of a solute produces density differences driving the flow. The effect of dispersion is modelled using an anisotropic Fickian dispersion tensor (Bear, J. Geophys. Res., vol. 66, 1961, pp. 1185–1197). In addition to molecular diffusion ($D_m^*$), the solute is redistributed by an additional spreading, in longitudinal and transverse flow directions, which is quantified by the coefficients $D_l^*$ and $D_t^*$, respectively, and it is produced by the presence of the pores. The flow is controlled by three dimensionless parameters: the Rayleigh–Darcy number $\textit{Ra}$, defining the relative strength of convection and diffusion, and the dispersion parameters $r=D_l^*/D_t^*$ and $\varDelta =D_m^*/D_t^*$. With the aid of numerical Darcy simulations, we investigate the mixing dynamics without and with dispersion. We find that in the absence of dispersion ($\varDelta \to \infty$) the dynamics is self-similar and independent of $\textit{Ra}$, and the flow evolves following several regimes, which we analyse. Then we analyse the effect of dispersion on the flow evolution for a fixed value of the Rayleigh–Darcy number ($\textit{Ra}=10^4$). A detailed analysis of the molecular and dispersive components of the mean scalar dissipation reveals a complex interplay between flow structures and solute mixing. We find that the dispersion parameters $r$ and $\varDelta$ affect the formation of fingers and their dynamics: the lower the value of $\varDelta$ (or the larger the value of $r$), the wider, more convoluted and diffused the fingers. We also find that for strong anisotropy, $r=O(10)$, the role of $\varDelta$ is crucial: except for the intermediate phases of the flow dynamics, dispersive flows show more efficient (or at least comparable) mixing than in non-dispersive systems. Finally, we look at the effect of the anisotropy ratio $r$, and we find that it produces only second-order effects, with relevant changes limited to the intermediate phase of the flow evolution, where it appears that the mixing is more efficient for small values of anisotropy. The proposed theoretical framework, in combination with pore-scale simulations and bead packs experiments, can be used to validate and improve current dispersion models to obtain more reliable estimates of solute transport and spreading in buoyancy-driven subsurface flows.
This review examines the critical role of meteorological data in optimising flight trajectories and enhancing operational efficiency in aviation. Weather conditions directly influence fuel consumption, delays and safety, making their integration into flight planning increasingly vital. Understanding these dynamics becomes essential for risk mitigation as climate change drives more frequent and severe weather events. Synthesising insights from 57 studies published between 2001 and 2024, this article highlights key variables – such as wind, temperature and convective weather – significantly impacting flight operations. A framework is proposed to improve air traffic management’s safety, efficiency and cost-effectiveness. The findings emphasise the need for systematically incorporating meteorological inputs into trajectory optimisation models, such as wind shear, convective storms and temperature gradients. This integration improves operational predictability and safety while advancing sustainability goals by reducing fuel consumption and CO2 emissions – an increasingly important priority amid rising climate variability and global air traffic demand.
Turbulence exhibits a striking duality: it drives concentrated substances apart, enhancing mixing and transport, while simultaneously drawing particles and bubbles into collisions. Little experimental data exist to clarify the latter process due to challenges in techniques for resolving bubble pairs from afar to coalescence via turbulent entrainment, film drainage and rupture. In this work, we tracked pairs of bubbles across nearly four orders of magnitude in spatial resolution, capturing the entire dynamics of collision and coalescence. The resulting statistics show that critical variables exhibit scalings with bubble size in ways that are different from some classical models, which were developed based on assumptions that bubble collision and coalescence only mirror the key scales of the surrounding turbulence. Furthermore, contrary to classical models which suggest that coalescence favours slow collision velocity, we find a ‘Goldilocks zone’ of relative velocities for bubble coalescence, where there is an optimal coalescence velocity that is neither too high nor too low. This zone arises from the competition between bubble–bubble and bubble–eddy interactions. Incorporating this zone into the new model yields excellent agreement with experimental results, laying a foundation for better predictions for many multiphase flow systems.
Interface-resolved direct numerical simulations are performed to investigate bubble-induced transition from a laminar to elasto-inertial turbulent (EIT) state in a pressure-driven viscoelastic square channel flow. The Giesekus model is used to account for the viscoelasticity of the continuous phase, while the dispersed phase is Newtonian. Simulations are performed for both single- and two-phase flows for a wide range of Reynolds (${Re}$) and Weissenberg (${\textit{Wi}}$) numbers. In the absence of any discrete external perturbations, single-phase viscoelastic flow is transitioned to an EIT regime at a critical Weissenberg number ($Wi_{cr})$ that decreases with increasing ${Re}$. It is demonstrated that injection of bubbles into a laminar viscoelastic flow introduces streamline curvature that is sufficient to trigger an elastic instability leading to a transition to an EIT regime. The temporal turbulent kinetic energy spectrum shows a scaling of $-2$ for this multiphase EIT regime, and this scaling is found to be independent of size and number of bubbles injected into the flow. It is also observed that bubbles move towards the channel centreline and form a string-shaped alignment pattern in the core region at the lower values of ${Re}=10$ and ${\textit{Wi}}=1$. In this regime, there are disturbances in the core region in the vicinity of bubbles while flow remains essentially laminar. Unlike the solid particles, it is found that increasing shear-thinning effect breaks up the alignment of bubbles.
Turbulent convection under strong rotation can develop an inverse cascade of kinetic energy from smaller to larger scales. In the absence of an effective dissipation mechanism at the large scales, this leads to the pile up of kinetic energy at the largest available scale, yielding a system-wide large-scale vortex (LSV). Earlier works have shown that the transition into this state is abrupt and discontinuous. Here, we study the transition to the inverse cascade at Ekman number ${Ek}=10^{-4}$ and using stress-free boundary conditions, in the case where the inverse energy flux is dissipated before it reaches the system scale, suppressing the LSV formation. We demonstrate how this can be achieved in direct numerical simulations by using an adapted form of hypoviscosity on the horizontal manifold. We find that, in the absence of the LSV, the transition to the inverse cascade becomes continuous. This shows that it is the interaction between the LSV and the background turbulence that is responsible for the earlier observed discontinuity. We furthermore show that the inverse cascade in absence of the LSV has a more local signature compared with the case with LSV.
Particle motions under nonlinear gravity waves at the free surface of a two-dimensional incompressible and inviscid fluid are considered. The Euler equations are solved numerically using a high-order spectral method based on a Hamiltonian formulation of the water-wave problem. Extending this approach, a numerical procedure is devised to estimate the fluid velocity at any point in the fluid domain given surface data. The reconstructed velocity field is integrated to obtain particle trajectories for which an analysis is provided, focusing on two questions. The first question is the influence of a wave setup or setdown as is typical in coastal conditions. It is shown that such local changes in the mean water level can lead to qualitatively different pictures of the internal flow dynamics. These changes are also associated with rather strong background currents which dominate the particle transport and, in particular, can be an order of magnitude larger than the well-known Stokes drift. The second question is whether these particle dynamics can be described with a simplified wave model. The Korteweg–de Vries equation is found to provide a good approximation for small- to moderate-amplitude waves on shallow and intermediate water depth. Despite discrepancies in severe cases, it is able to reproduce characteristic features of particle paths for a wave setup or setdown.
In this study we focus on the collision rate and contact time of finite-sized droplets in homogeneous, isotropic turbulence. Additionally, we concentrate on sub-Hinze–Kolmogorov droplet sizes to prevent fragmentation events. After reviewing previous studies, we theoretically establish the equivalence of spherical and cylindrical formulations of the collision rate. We also obtained a closed-form expression for the collision rate of inertial droplets under the assumption of inviscid interactions. We then perform droplet-resolved simulations using the Basilisk solver with a multi-field volume-of-fluid method to prevent numerical droplet coalescence, ensuring a constant number of droplets of the same size within the domain, thereby allowing for the accumulation of collision statistics. The collision statistics are studied from numerical simulations, varying parameters such as droplet volume fraction, droplet size relative to the dissipative scale, density ratio and viscosity ratio. Our results show that the contact time is finite, leading to non-binary droplet interactions at high volume fractions. Additionally, the contact duration is well predicted by the eddy turnover time. We also find that the radial distribution at contact is significantly smaller than that predicted by the hard-sphere model due to droplet deformation in close proximity. Furthermore, we show that for neutrally buoyant droplets, the mean relative velocity is similar to the mean relative velocity of the continuous phase, except when the droplets are close. Finally, we demonstrate that the collision rate obeys the appropriate theoretical law, although a numerical prefactor weakly varies as a function of the dimensionless parameters, which differs from the constant prefactor from theory.
We develop an asymptotic theory of a compressible turbulent boundary layer on a flat plate, in which the mean velocity and temperature profiles can be obtained as exact asymptotic solutions of the boundary-layer equations, which are closed using functional relations of a general form connecting the turbulent shear stress and turbulent enthalpy flux to the mean velocity and enthalpy gradients. The outer region of the boundary layer is considered at moderate supersonic free-stream Mach numbers, when the relative temperature difference across the layer is of order one. A special change of variables allows us to construct the solution in the outer region in the form of asymptotic expansions at large values of the logarithm of the Reynolds number based on the boundary-layer thickness. As a result of asymptotic matching of the solutions for the outer region and logarithmic sublayer, the velocity and temperature defect laws are obtained, which allow us to describe the profiles of these quantities in the outer and logarithmic regions by universal curves known for the boundary layer of an incompressible fluid. Similarity rules for the Reynolds-tensor components and root-mean-square enthalpy fluctuation are given. The recovery and Reynolds-analogy factors are calculated. A friction law is established that is valid under arbitrary wall-heat-transfer conditions.
The present work investigates the thermochemical non-equilibrium effect in the DLR combustor using a two-temperature model combined with vibration-chemistry coupling model. Two operating conditions with inflow Mach 2 and 6 are selected for study. The simulation results illustrate that translational-vibrational non-equilibrium is related to energy transfer behaviour and the translational-vibrational relaxation time. When kinetic energy and chemical energy are converted into internal energy, there is a significant difference in the degree of conversion to translational and vibrational energy. If the translational-vibrational relaxation time is larger than the flow time, such as the relaxation time of the mainstream aftershock wave is 0.25 s for the condition with inflow Mach 2, and the flow time is 3 × 10−5 s, non-equilibrium will occur. Significant differences exist between the flow fields with Mach 2 and 6. A clear boundary layer separation occurs at Mach 6. Combustion occurs at the shear layer, which is in translational-vibrational equilibrium, and there are varying degrees of non-equilibrium in other locations. The dissociation of N2 and production of NO primarily occur on the strut walls and the upper/lower walls of the combustor. The mass fraction of NO is higher than the value at Mach 2. The combustion performance is influenced by the thermochemical non-equilibrium effect. At the condition of Mach 2, it increases the combustion efficiency by 10% near the injector and 0.27% at outlet relatively. Non-equilibrium inhibits the initial upstream combustion while slightly promoting downstream combustion under inflow Mach 6 condition.
Hierarchical parcel swapping (HiPS) is a multiscale stochastic model of turbulent mixing based on a binary tree. Length scales decrease geometrically with increasing tree level, and corresponding time scales follow inertial range scaling. Turbulent eddies are represented by swapping subtrees. Lowest-level swaps change fluid parcel pairings, with new pairings instantly mixed. This formulation suitable for unity Schmidt number $Sc$ is extended to non-unity $Sc$. For high $Sc$, the tree is extended to the Batchelor level, assigning the same time scale (governing the rate of swap occurrences) to the added levels as the time scale at the base of the $Sc=3$ tree. For low $Sc$, a swap at the Obukhov–Corrsin level mixes all parcels within corresponding subtrees. Well-defined model analogues of turbulent diffusivity, and mean scalar-variance production and dissipation rates are identified. Simulations idealising stationary homogeneous turbulence with an imposed scalar gradient reproduce various statistical properties of viscous-range and inertial-range pair dispersion, and of the scalar power spectrum in the inertial-advective, inertial-diffusive and viscous-advective regimes. The viscous-range probability density functions of pair separation and scalar dissipation agree with applicable theory, including the stretched-exponential tail shape associated with viscous-range scalar intermittency. Previous observation of that tail shape for $Sc=1$, heretofore not modelled or explained, is reproduced. Comparisons to direct numerical simulation allow evaluation of empirical coefficients, facilitating quantitative applications. Parcel-pair mixing is a common mixing treatment, e.g. in subgrid closures for coarse-grained flow simulation, so HiPS can improve model physics simply by smarter (yet nearly cost-free) selection of pairs to be mixed.
Turbulence amplification is crucial in shock-wave/turbulent boundary layer interaction (SWTBLI). To examine the impact of interaction intensity on turbulence amplification and inter-component energy transfer, direct numerical simulations of impinging oblique shock reflections at strong ($37^\circ$) and weak ($33.2^\circ$) incident angles are conducted. The results indicate that strong interaction generates a larger permanent separation zone, featuring the unique ‘oblique platform’ in Reynolds stress peaks and ‘secondary turbulence amplification’ downstream. Reynolds stress budget and spanwise spectral analyses reveal that $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ amplify primarily by production terms. $u''$, $v''$ and $w''$ represent the streamwise, wall-normal and spanwise velocity fluctuations. At the investigated Reynolds number, deceleration effect dominates the initial amplification of $\widetilde {u^{\prime \prime}u^{\prime \prime}}$, influencing multi-scale wall-bounded turbulence structures, while shear effect remains active along the shear layer and may primarily affects streaky structures. The initial amplification of $-\!\widetilde{\ u^{\prime\prime}v^{\prime\prime}}$ is driven by the adverse pressure gradient, which reshapes the velocity profile and affects the wall-normal velocity. The primary energy for $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ and $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ amplification originates from $\widetilde{ u^{\prime \prime}u^{\prime \prime}}$ via the pressure-strain term. The delayed amplification of $\!\widetilde{\ v^{\prime\prime}v^{\prime\prime}}$ is influenced by its production term and energy redistribution, with $\widetilde {w^{\prime \prime}w^{\prime \prime}}$ exhibiting higher spectral consistency with $\widetilde {u^{\prime \prime}u^{\prime \prime}}$ and receiving more energy. In strong interaction, the ‘oblique platform’ serves as a stable dissipation region, formed by increased separation–incident shock distance, characterised by progressively concentrated stress spectra and the transition to large-scale streaks. The downstream ‘secondary amplification’ process resembles the initial amplification near the separation shock foot, driven by intermittent compression waves that strengthen shear instabilities and the deceleration effect. These findings detail the streamwise stress evolution, providing a more comprehensive turbulence amplification mechanism in SWTBLI.