To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Direct numerical simulations of a uniform flow past a fixed spherical droplet are performed to determine the parameter range within which the axisymmetric flow becomes unstable. The problem is governed by three dimensionless parameters: the drop-to-fluid dynamic viscosity ratio, $\mu ^\ast$, and the external and internal Reynolds numbers, ${\textit{Re}}^e$ and ${\textit{Re}}^i$, which are defined using the kinematic viscosities of the external and internal fluids, respectively. The present study confirms the existence of a regime at low-to-moderate viscosity ratio where the axisymmetric flow breaks down due to an internal flow instability. In the initial stages of this bifurcation, the external flow remains axisymmetric, while the asymmetry is generated and grows only inside the droplet. As the disturbance propagates outward, the entire flow first transits to a biplanar-symmetric flow, characterised by two pairs of counter-rotating streamwise vortices in the wake. A detailed examination of the flow field reveals that the vorticity on the internal side of the droplet interface is driving the flow instability. Specifically, the bifurcation sets in once the maximum internal vorticity exceeds a critical value that decreases with increasing ${\textit{Re}}^i$. For sufficiently large ${\textit{Re}}^i$, internal flow bifurcation may occur at viscosity ratios of $\mu ^\ast = {\mathcal{O}}(10)$, an order of magnitude higher than previously reported values. Finally, we demonstrate that the internal flow bifurcation in the configuration of a fixed droplet in a uniform fluid stream is closely related to the first path instability experienced by a buoyant, deformable droplet of low-to-moderate $\mu ^\ast$ freely rising in a stagnant liquid.
Blade ice accumulation is a serious problem that changes turbine aerodynamics and dynamics, leading to lower power output and higher structural loading. Different from the literature, this paper investigates the performance effectiveness of baseline wind turbine controllers: the generator torque and collective blade pitch controllers against rotor blade ice accumulation. The NREL 5-MW turbine is utilised, and simulations of baseline controllers are conducted with the MS (Mustafa Sahin) Bladed Model for clean and iced blade cases. The performance of the controllers is examined in below (Region 2) and above (Region 3) rated regions under 1 m/s step rising wind speeds. Results are presented through various parameters, including turbine controllers’ gain(s), blade pitch angle, rotor speed, power, etc. Rotor speed response is used to evaluate the controllers’ performance. Even slight blade ice accumulation is estimated to affect turbine efficiency and characteristics, decreasing ${C_{pmax}}$ by 13.27%, slightly varying optimum blade pitch angle and tip speed ratio, altering the control input gain by up to 14.68%. Blade ice accumulation is observed to adversely affect baseline controllers’ performance. In Region 2, the torque controller exhibits reduced transient and steady-state performance, with rotor speed reaching the steady-state approximately 2 s later and showing a steady-state error of 1.86%. In Region 3, the pitch controller’s transient performance deteriorates at low wind speeds, particularly near the rated wind speed, leading to an increased decay time of up to 5.2 s. However, beyond 16 m/s, pitch controller performance gradually recovers, becoming nearly identical to the clean blade case at 21 m/s, while the controller steady-state performance remains unaffected.
A literature review suggests that the flows past simply connected bodies with aspect ratio close to unity and symmetries aligned with the flow follow a consistent sequence of regimes (steady, periodic, quasiperiodic) as the Reynolds number increases. However, evidence is fragmented, and studies are rarely conducted using comparable numerical or experimental set-ups. This paper investigates the wake dynamics of two canonical bluff bodies with distinct symmetries: a cube (discrete) and a sphere (continuous). Employing three-dimensional (3-D) global linear stability analysis and nonlinear simulations within a unified numerical framework, we identify the bifurcation sequence driving these regime transitions. The sequence: a pitchfork bifurcation breaks spatial symmetry; a Hopf bifurcation introduces temporal periodicity ($St_1$); a Neimark–Sacker bifurcation destabilises the periodic orbit, leading to quasiperiodic dynamics with two incommensurate frequencies ($St_1, St_2$). A Newton–Krylov method computes the unstable steady and periodic base flows without imposing symmetry constraints. Linear stability reveals similarities between the cube and sphere in the spatial structure of the leading eigenvectors and in the eigenvalue trajectories approaching instability. This study provides the first confirmation of a Neimark–Sacker bifurcation to quasiperiodicity in these 3-D wakes, using Floquet stability analysis of computed unstable periodic orbits and their Floquet modes. The quasiperiodic regime is described in space and time by the Floquet modes’ effects on the base flow and a spectrum dominated by the two incommensurate frequencies and tones arising from nonlinear interactions. Although demonstrated for a cube and a sphere, this bifurcation sequence, leading from steady state to quasiperiodic dynamics, suggests broader applicability beyond these geometries.
The effect of the bio-inspired leading-edge modifications on the aerodynamic performance of non-slender delta wing models was investigated in a low-speed wind tunnel using force and surface pressure measurements. The measurements were performed at a Reynolds number of $Re = 1 \times {10^5}$ over an angle-of-attack range from $ - 4^\circ $ to $30^\circ $. Seven different sharp-edged delta wing models with a 45-degree sweep angle (${\rm{\varLambda }}$), including a base wing, were used to study the effect of sinusoidal and saw-tooth leading-edge modifications. Sinusoidal leading-edge wing designs were inspired by the leading-edge tubercles of the humpback whale’s pectoral fins. The results indicate that the bio-inspired wing modifications resulted in a delay in the stall angle by 4 degrees, smoother stall characteristics, a higher maximum lift coefficient, and increased post-stall lift. The drag coefficient of the modified wings was observed as higher than that of the base wing model. Regarding the longitudinal static stability, leading-edge modifications decreased the stability of the wing as the angle-of-attack surpassed $\alpha = 17^\circ $.
The Monte Carlo methods are frequently employed to evaluate the overall characteristics of non-monotonic, non-linear, non-superpositional performance functions. However, the multi-parameter, multi-objective spacecraft separation dynamics model is not amenable to decoupling to produce a result. This paper presents a parametric objective function that can be sampled. It combines the reliability analysis of the complex non-linear spacecraft separation model with Automated Dynamic Analysis of Mechanical Systems (ADAMS) and uses the Monte Carlo method to obtain the separation performance of the spacecraft separation system reliability profile, that is to say, the distribution of separation performance. The performance distribution of the spacecraft separation system was determined and parameters such as spring separation force, spring line of action, module mass and module centre of mass position were found to have a significant effect on the spacecraft separation dynamics by Adaboost machine learning regression.
Understanding the interplay between thermal, elastic and hydrodynamic effects is crucial for a variety of applications, including the design of soft materials and microfluidic systems. Motivated by these applications, we investigate the emergence of natural convection in a fluid layer that is supported from below by a rigid surface, and covered from above by a thin elastic sheet. The sheet is laterally compressed and is maintained at a constant temperature lower than that of the rigid surface. We show that for very stiff sheets, and below a certain magnitude of the lateral compression, the system behaves as if the fluid were confined between two rigid walls, where the emergent flow exhibits a periodic structure of vortices with a typical length scale proportional to the depth of the fluid, similar to patterns observed in Rayleigh–Bénard convection. However, for more compliant sheets, and above a certain threshold of the lateral compression, a new local minimum appears in the stability diagram, with a corresponding wavenumber that depends solely on the bending modulus of the sheet and the specific weight of the fluid, as in wrinkling instability of thin sheets. The emergent flow field in this region synchronises with the wrinkle pattern. We investigate the exchange of stabilities between these two solutions, and construct a stability diagram of the system.
A bandpass filter with reconfigurable band traps operating in the S-band with a wide tuning range for the transmission zeros is presented in this article. The filter employs a main transmission line path comprising two different step impedance resonator structure, with stopband formation achieved through four quarter-wavelength resonators coupled to both ends of the main path. These resonators folded into open-ring to decrease the area of the circuit, are loaded with reconfigurable elements (SMV2020), controlled via a voltage-based control system. The voltage control system, which is designed by microcontroller unit (MCU)-AT32F421K8T7, can change the power supply voltage linearly to make this filter system flexible. The filter is fabricated on a Rogers 4350 substrate with a relative dielectric constant of 3.66, a loss tangent of 0.004, and a thickness of 0.762 mm and simulated in high-frequency structure simulator. The filter demonstrates favorable passband characteristics on either side of the stopband, achieving an in-band insertion loss of less than 1 dB and a return loss exceeding 12 dB. The reconfigurable stopband spans from 2.1 to 3.0 GHz, with a stopband return loss greater than 13 dB and an out-of-band rejection exceeding 50 dB.
This paper presents a wideband balanced reflectionless filter based on the half-wavelength ring resonator. The proposed structure is simple and easy for manufacture. The design procedures are elaborately introduced. To promote understanding, the analysis of differential-mode (DM) and common-mode (CM) equivalent circuits are given. The corresponding equations are derived. For validation, a design example is fabricated and tested. The measured results verify its ability of transmitting DM signals and eliminating undesired CM signals. Specifically, the 21.6-dB CM suppression bandwidth can reach up to 273%, while the CM absorption bandwidth can reach up to 195%. The proposed balanced reflectionless filter exhibits excellent DM matching level, CM suppression level, and wide reflectionless bandwidth.
An experimental study of the equation of state for metallic powders under impact loading was carried out at a high-energy laser facility. A laser-ablatable micro-target was obtained to satisfy the laser equation of state for experimental study, and the precise characterization of the initial density was realized. The technique boosts the pressure of copper powder to 1400 GPa. The data consistency can effectively distinguish the data trends under different initial densities (~4.05 and 4.50 g/cm3). Experimental data can effectively distinguish the differences between the high-pressure Thomas–Fermi model and the Thomas–Fermi–Kirzhnits model, providing strong support for the WEOS-Pα model of the Institute of Applied Physics and Computational Mathematics, which is more in line with the actual state description of the material. This experimental technique can be extended to study the high-pressure physical properties of other powder particles.
Electrical contacts are critical components in all connector systems, as they enable the flow of electrical current. However, power contacts are increasingly subjected to various forms of degradation due to the high input power demands of modern electrical circuits. One of the primary causes of damage is the electrical arc, which can lead to erosion and oxidation of contact surfaces, ultimately resulting in electrical insulation failure. In industries such as aerospace, this type of failure can be mission-critical, especially in scenarios where in-orbit repair is not possible. Therefore, the design and choice of contact material must be carefully considered. Based on theoretical studies of arc-related phenomena, we conducted experimental tests focusing on the optimisation of hemispherical contact using samples made from various pure and coated materials. The contact surfaces in these tests were composed of high-conductivity base such as copper (Cu) and aluminum (Al), and were also coated with noble metals such as gold (Au) and silver (Ag). These materials are commonly used in sectors including aerospace, automotive and general industrial applications. To ensure a fair comparison, all contact samples were manipulated and tested under consistent conditions that reflect their real-world operational environments. The resulting arc parameters were identified and analysed through modeling to determine the most suitable contact design and material most capable of withstanding arc-related degradation over the mission duration, thus ensuring longer service life in applications were a continuous monitoring and repair are not feasible. The results show that repetitive exposure to high input power significantly damages contacts surfaces. Furthermore, the use of coated materials effectively extends the lifespan of the electrical contacts. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses support these findings, revealing that high-power input increases erosion rates and leaves pronounced marks on the contact surfaces.
Invariant maps are a useful tool for turbulence modelling, and the rapid growth of machine learning-based turbulence modelling research has led to renewed interest in them. They allow different turbulent states to be visualised in an interpretable manner and provide a mathematical framework to analyse or enforce realisability. Current invariant maps, however, are limited in machine learning models by the need for costly coordinate transformations and eigendecomposition at each point in the flow field. This paper introduces a new polar invariant map based on an angle that parametrises the relationship of the principal anisotropic stresses, and a scalar that describes the anisotropy magnitude relative to a maximum value. The polar invariant map reframes realisability in terms of a limiting anisotropy magnitude, allowing for new and simplified approaches to enforcing realisability that do not require coordinate transformations or explicit eigendecomposition. Potential applications to machine learning-based turbulence modelling include post-processing corrections for realisability, realisability-informed training, turbulence models with adaptive coefficients and general tensor basis models. The relationships to other invariant maps are illustrated through examples of plane channel flow and square duct flow. Sample calculations are provided for a comparison with a typical barycentric map-based method for enforcing realisability, showing an average 62 % reduction in calculation time using the equivalent polar formulation. The results provide a foundation for new approaches to enforcing realisability constraints in Reynolds-averaged turbulence modelling.
We study the interaction between a pair of particles suspended in a uniform oscillatory flow. The time-averaged behaviour of particles under these conditions, which arises from an interplay of inertial and viscous forces, is explored through a theoretical framework relying on small oscillation amplitude. We approximate the oscillatory flow in terms of dual multipole expansions, with which we compute time-averaged interaction forces using the Lorentz reciprocal theorem. We then develop analytic approximations for the force in the limit where Stokes layers surrounding the particles do not overlap. Finally, we show how the same formalism can be generalised to the situation where the particles are free to oscillate and drift in response to the applied flow. The results are shown to be in agreement with existing numerical data for forces and particle velocities. The theory thus provides an efficient means to quantify nonlinear particle interactions in oscillatory flows.
The dynamics of thin viscous liquid films flowing down an inclined wall under gravity in the presence of an upward flowing high-speed air stream is considered. The air stream induces nonlinear waves on the interface and asymptotic solutions are developed to derive a non-local evolution equation forced by the air pressure which is obtained analytically, and incorporating a constant tangential stress. Benney equations in the capillary (strong surface tension) and inertio-capillary regimes are derived and studied. The air stream produces Turing-type short wave instabilities in sub-critical Reynolds number regimes that would be stable in the absence of the outer flow. Extensive numerical experiments are carried out to elucidate the rich dynamics in the above-mentioned short-wave regime. The stability of different branches of solutions of non-uniform steady states is carried out, along with time-dependent nonlinear computations that are used to track the large-time behaviour of attractors. A fairly complete picture of different solution types are categorised in parameter space. The effect of the Reynolds number on the wave characteristics in the inertio-capillary regime is also investigated. It is observed that, for each value of the slenderness parameter $\delta$, there exists a critical Reynolds number $R_c$ above which the solutions become unbounded by encountering finite-time singularities. Increasing the air speed significantly decreases $R_c$, making the system more prone to large amplitude singular events even at low Reynolds numbers when the system would have been stable in the absence of the air stream.
An analytical theory is presented for linear, local, short-wavelength instabilities in swirling flows, in which axial shear, differential rotation, radial thermal stratification, viscosity and thermal diffusivity are all taken into account. A geometrical optics approach is applied to the Navier–Stokes equations, coupled with the energy equation, leading to a set of amplitude transport equations. From these, a dispersion relation is derived, capturing two distinct types of instability: a stationary centrifugal instability and an oscillatory, visco-diffusive McIntyre instability. Instability regions corresponding to different axial or azimuthal wavenumbers are found to possess envelopes in the plane of physical parameters, which are explicitly determined using the discriminants of polynomials. As these envelopes are shown to bound the union of instability regions associated with particular wavenumbers, it is concluded that the envelopes correspond to curves of critical values of physical parameters, thereby providing compact, closed-form criteria for the onset of instability. The derived analytical criteria are validated for swirling flows modelled by a cylindrical, differentially rotating annulus with axial flow induced by either a sliding inner cylinder, an axial pressure gradient or a radial temperature gradient combined with vertical gravity. These criteria unify and extend, to viscous and thermodiffusive differentially heated swirling flows, the Rayleigh criterion for centrifugally driven instabilities, the Ludwieg–Eckhoff–Leibovich–Stewartson criterion for isothermal swirling flows and the Goldreich–Schubert–Fricke criterion for non-isothermal azimuthal flows. Additionally, they predict oscillatory modes in swirling, differentially heated, visco-diffusive flows, thereby generalising the McIntyre instability criterion to these systems.
We present a study of second harmonic generation (SHG) and third harmonic generation (THG) in lithium triborate (LBO) crystals using a high-energy, 10-J-class, 10 Hz ytterbium-doped yttrium aluminum garnet laser system. We achieved high conversion efficiencies of 75% for SHG and 56% for THG for Gaussian-like temporal pulse shapes and top-hat-like beam profiles. The angular and temperature dependence of the LBO crystals was measured and validated through numerical simulations. The SHG process exhibited an angular acceptance bandwidth of 1.33 mrad and a temperature acceptance bandwidth of 2.61 K, while the THG process showed 1.19 mrad and 1.35 K, respectively. In addition, long-term stability measurements revealed root mean square energy stabilities of 1.3% for SHG and 1.24% for THG. These results showcase the reliability of LBO crystals for high-energy, high-average-power harmonic generation. The developed system offers automated switching between harmonics provided at the system output. The system can be easily adapted to neodymium-doped yttrium aluminum garnet based pump lasers as well.
We introduce a novel unsteady shear protocol, which we name rotary shear (RS), where the flow and vorticity directions are continuously rotated around the velocity-gradient direction by imposing two out-of-phase oscillatory shears (OSs) in orthogonal directions. We perform numerical simulations of dense suspensions of rigid non-Brownian spherical particles at volume fractions ($\phi$) between 0.40 and 0.55, subject to this new RS protocol, and compare with the classical OS protocol. We find that the suspension viscosity displays a similar non-monotonic response as the strain amplitude ($\gamma _0$) is increased: a minimum viscosity is found at an intermediate, volume-fraction-dependent strain amplitude. However, the suspension dynamics is different in the new protocol. Unlike the OS protocol, suspensions under RS do not show absorbing states at any $\gamma _0$ and do not undergo the reversible–irreversible transition: the stroboscopic particle dynamics is always diffusive, which we attribute to the fact that the RS protocol is inherently irreversible due to its design. To validate this hypothesis, we introduce a reversible-RS (RRS) protocol, a combination of RS and OS, where we rotate the shear direction (as in RS) until it is instantaneously reversed (as in OS), and find the resulting rheology and dynamics to be closer to OS. Detailed microstructure analysis shows that both the OS and RRS protocols result in a contact-free, isotropic to an in-contact, anisotropic microstructure at the dynamically reversible-to-irreversible transition. The RS protocol does not render such a transition, and the dynamics remains diffusive with an in-contact, anisotropic microstructure for all strain amplitudes.
Digital Twinning (DT) has become a main instrument for Industry 4.0 and the digital transformation of manufacturing and industrial processes. In this statement paper, we elaborate on the potential of DT as a valuable tool in support of the management of intelligent infrastructures throughout all stages of their life cycle. We highlight the associated needs, opportunities, and challenges and discuss the needs from both the research and applied perspectives. We elucidate the transformative impact of digital twin applications for strategic decision-making, discussing its potential for situation awareness, as well as enhancement of system resilience, with a particular focus on applications that necessitate efficient, and often real-time, or near real-time, diagnostic and prognostic processes. In doing so, we elaborate on the separate classes of DT, ranging from simple images of a system, all the way to interactive replicas that are continually updated to reflect a monitored system at hand. We root our approach in the adoption of hybrid modeling as a seminal tool for facilitating twinning applications. Hybrid modeling refers to the synergistic use of data with models that carry engineering or empirical intuition on the system behavior. We postulate that modern infrastructures can be viewed as cyber-physical systems comprising, on the one hand, an array of heterogeneous data of diversified granularity and, on the other, a model (analytical, numerical, or other) that carries information on the system behavior. We therefore propose hybrid digital twins (HDT) as the main enabler of smart and resilient infrastructures.
Direct numerical simulations are conducted to investigate the transition flow over a flat plate featuring pressure gradients and a three-dimensional rough surface. The rough surface is categorised into nine types based on the effective slope ratio ${E{{S}_{z}}}/{E{{S}_{x}}}$ ($ES_{z}$: spanwise effective slope, $ES_{x}$: streamwise effective slope) and skewness $Sk$, with the embedded boundary method employed for resolving the solid wall. Findings indicate that the influence of ${E{{S}_{z}}}/{E{{S}_{x}}}$ on the streamwise vortex pair counters the effects on the wall-normal shear and the two-dimensional spanwise vortex sheet. Negative skewness alone can stimulate all three components of the hairpin vortex simultaneously. The new formula for predicting the sheltering angle, which incorporates the up-ejecting segment, demonstrates enhanced accuracy in predicting the sheltering area across the entire rough surface, outperforming the previous formulation. The forward displacement relative to the drag peak of the pressure stagnation point along the streamwise direction remains unaffected by the spanwise effective slope and the skewness. In the upper transition region, negative skewness significantly intensifies both the production and dissipation terms of the fluctuating kinetic energy, which correlate with the inviscid instability of the separation flow and the viscous instability induced by the lift-up mechanism. During the early phase of transition, negative skewness is capable of producing linear modes that match the intensity of nonlinear coherent structures at intermediate to high frequencies, exhibiting quasi-orthogonality. During the late transition phase, zero skewness can give rise to linear modes featuring robust quasi-orthogonality at low frequencies.
When a low Mach flow is imposed through an orifice at the end of a cavity, intense whistling can occur. It results from the constructive feedback loop between the acoustic field of the cavity and coherent vortex shedding at the edges of the orifice with bias flow. Whistling is often a source of unwanted noise, demanding passive control strategies. In this study, it is shown that whistling can be suppressed by utilising the slow-sound effect. This periodic arrangement of small cavities detunes the cavity from the frequency range where the orifice flow exhibits a potential for acoustic energy amplification, by reducing the effective speed of sound inside the cavity. Acoustic and optical measurement techniques are employed, including scattering matrix and impedance measurements, and particle image velocimetry to reconstruct the velocity field downstream of the orifice. The production and dissipation of acoustic energy is investigated using Howe’s energy corollary. The spatio-temporal patterns of the vortex sound downstream of the orifice are revealed. They are deduced from phase-averaged acoustic and Lamb vector fields and give qualitative insight into the physical mechanisms of the whistling phenomenon.