To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum stochastic integrals have been constructed in various contexts [2, 3, 4, 5, 9] by adapting the construction of the classical L2-Itô-integral with respect to Brownian motion. Thus, the integral is first defined for simple integrands as a finite sum, then one establishes certain isometry relations or suitable bounds to allow the extension, by continuity, to more general integrands. The integrator is typically operator-valued, the integrand is vector-valued or operator-valued and the quantum stochastic integral is then given as a vector in a Hilbert space, or as an operator on the Hilbert space determined by its action on suitable vectors.
The existence of r-regular graphs such that each edge lies in exactly t triangles, for given integers t < r, is studied. If t is sufficiently close to r then each such connected graph has to be the complete multipartite graph. Relations to graphs with isomorphic neighborhoods are also considered.
A class of models of single-species dynamics with diffusion within and between patches is considered. It is shown that under our prescribed conditions, there is a unique, positive, globally asymptotically stable steady state.
We demonstrate how a fairly simple “perturbed test function” method establishes periodic homogenisation for certain Hamilton-Jacobi and fully nonlinear elliptic partial differential equations. The idea, following Lions, Papanicolaou and Varadhan, is to introduce (possibly nonsmooth) correctors, and to modify appropriately the theory of viscosity solutions, so as to eliminate then the effects of high-frequency oscillations in the coefficients.
We consider the resolvent problem for the Stokes system in exterior domains, under Dirichlet boundary conditions:
where Ω is a bounded domain in ℝ3. It will be shown that in general there is no constant C > 0 such that for with , div u = 0, and for with . However, if a solution (u, π) of problem (*) exists, it is uniquely determined, provided that u(x) and ∇π(x) decay for large values of |x|. These assertions imply a non-existence result in Hölder spaces.
A model of a predator–prey system showing group defence on the part of the prey is formulated, and reduced to a three-parameter family of quartic polynomial systems of equations. Mathematically, this system contains the Volterra–Lotka system, and yields numerous kinds of bifurcation phenomena, including a codimension-two singularity of cusp type, in a neighbourhood of which the quartic system realises every phase portrait possible under small smooth perturbation. Biologically, the nonmonotonic behaviour of the predator response function allows existence of a second singularity in the first quadrant, so that the system exhibits an enrichment paradox, and, for certain choices of parameters, coexistence of stable oscillation and a stable equilibrium.
We show that for c > 0 there exists a positive constant μ* such that (*)μ possesses at least one solution if μ ∈ (0, μ*) and no solutions if μ > μ*. Furthermore, there exists a positive constant μ**≦μ* such that (*)μ possesses at least two solutions if μ∈(0, μ**), 2<N<6. For N≧6, μ∈(0,μ**), we show that problem (*)μ possesses a unique solution if f(x) is radial with f′(r) < 0(r = |x|).
Uniform asymptotic expansions are derived for solutions of the spheroidal wave equation, in the oblate case where the parameter µ is real and nonnegative, the separation parameter λ is real and positive, and γ is purely imaginary (γ = iu). As u →∞, three types of expansions are derived for oblate spheroidal functions, which involve elementary, Airy and Bessel functions. Let δ be an arbitrary small positive constant. The expansions are uniformly valid for λ/u2 fixed and lying in the interval (0,2), and for λ / u2when 0<λ/u2 < 1, and when 1 = 1≦λ/u2 < 2. The union of the domains of validity of the various expansions cover the half- plane arg (z)≦ = π/2.
The concept of weak relative-injectivity of modules was introduced originally in [10], where it is shown that a semiperfect ring R is such that every cyclic right module is embeddable essentially in a projective right R-module if and only if R is right artinian and every indecomposable projective right R-module is uniform and weakly R-injective. We show that in the above characterization the requirement that indecomposable projective right R-modules be uniform is superfluous (Theorem 1.11). In this paper we further the study of weak relative-injectivity by considering the class of rings for which every right module is weakly injective relative to every finitely generated right module. We refer to such rings as right weakly-semisimple rings. The class of right weakly-semisimple rings includes properly all semisimple rings and is a subclass of the class of right QI-rings. A ring R is said to be a right QI-ring if every quasi-injective right R-module is injective. QI-rings have been studied in [2], [3], [4], [6], [7], [8], [11], among others.
Whether the -radical of a structural matrix near-ring (B, R) is the sum of two non-trivial ideals, one of which is nilpotent, is an open problem. However, it is known that ((B, R)) contains two ideals and , which are respectively precisely the two ideals, the sum of which is the Jacobson radical, in the case where the underlying near-ring is a ring. We strengthen our conjecture that and are the sought-after ideals by showing that (B, R)/≅(C, R) in the near-ring case, where C is the largest symmetric Boolean matrix such that C≦B, and by showing that is nilpotent.
where Ω is a bounded smooth domain, k a bounded, nonnegative measurable function and v Ω 0. For the solution u to this problem, which is shown to exist if k(x) > 0 on some subset of Ω with positive measure, a uniform bound for |∇u| in Ω is derived when k(x) ≧ ψ (dist (x, ∂Ω)) with ψ (s)/sv ∈ Lp(0, a) for some a > 0, p > 1.
Let I denote the interval [0,1] in its usual topology and let S = S(I) be the semigroup of continuous mappings of I into itself with function composition as the semigroup operation. In a survey talk given at Oberwolfach in 1989 (see [5]), K. D. Magill Jr. pointed out that some elementary algebraic properties of S are still unknown. We shall answer one of the questions he raised (which appears as Problem 4.6 in [5] and which he had asked earlier, as long ago as 1975 [3]) by showing that S has infinitely many distinct two-sided ideals. In fact, we shall produce an infinite descending sequence of distinct ideals. As Magill points out, this also solves his Problem 4.5: S has infinitely many distinct congruences. We believe that S must have c distinct ideals, but we have been unable to prove this.
This note discusses primeness for semigroup rings of semigroups satisfying a certain condition, weaker than the u.p. property. These semigroups include free products of semigroups, semigroups presented by a single relator and at least three generators, and free inverse semigroups of infinite rank.
In this paper we prove a theorem concerning existence and nonexistence of minimising harmonic maps in each connected component using the framework of Brezis, Coron and Soyeur.
In this paper we obtain some theorems of Bishop–Gromov type for tubes about a submanifold and semitubes about a real hypersurface of a Riemannian or Kaehler manifold with curvature bounded either from below or from above.
We study the stabilisation of a one-dimensional diffusion equation by means of static feedback. The equation contains the so-called Sturm-Liouville operator (S-L operator). A perturbation, often interpreted as an error in modelling physical systems, enters the principal part and the boundary condition of the S-L operator. Since the perturbation is not subordinate to the operator, the classical perturbation theory is no longer available. We show, however, that the feedback stabilisation scheme for the unperturbed equation is effective also for the perturbed equation as long as the perturbation is small in an adequate topology. The key idea is to show the strong continuity of the eigenfunctions for the S-L operator relative to the coefficients of the operator.
This paper describes the effective properties of a two-dimensional two-component dielectric composite. Each component is supposed to be isotropic and is characterised by a pair of constants of electrical and magnetic permeabilities. Effective properties of an arbitrary anisotropic composite depend on its microstructure and are characterised by a pair of symmetric tensors of electrical and magnetic permeabilities. Here we construct the so-called Gm-closure which is the set of all possible values of these pairs, corresponding to all possible microstructures with prescribed volume fractions of the given components. The exact bounds of the Gm-closure are obtained and the microstructure corresponding to each point of the Gm-closure set is determined.
We apply a version of the Nash–Moser method to prove existence of periodic solutions for nonlinear elliptic equations and systems, involving singular perturbations. We allow nonlinearities depending on derivatives of order two more than that of the linear part, thus extending the previous results. Our result is new even in the case of one equation in one spatial dimension.