To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A weak form of faithfulness, depending on Green’s equivalence $\mathcal{D}$, is introduced for a ring $R$ graded by a semigroup $S$. Suppose that $R$ satisfies this condition. It is shown that if $e$ and $f$ are $\mathcal{D}$-equivalent idempotents of $S$ and $R_e$ is semiprime (respectively, prime, semiprimitive, right primitive), then $R_f$ is semiprime (respectively, prime, semiprimitive, right primitive). In addition, it is shown that if $G$ and $H$ are maximal subgroups of $S$ lying in the same $\mathcal{D}$-class and $R_G$ is semiprime (respectively, prime, semiprimitive, right primitive), then $R_H$ is semiprime (respectively, prime, semiprimitive, right primitive).
where $(q_m)$ is the classical sequence of denominators of convergents to the continued fraction $\alpha=[0,u_1,u_2,\dots]$ and $(u_m)$ is assumed bounded, with a distribution.
If the infinite word $\bm{u}=u_1u_2\dots$ has arbitrarily large instances of segment repetition at or near the beginning of the word, then we quantify this property by means of a number $\gamma$, called the segment-repetition factor.
If $\alpha$ is not a quadratic irrational, then we produce a specific sequence of quadratic irrational approximations to $\alpha$, the rate of convergence given in terms of $L$ and $\gamma$. As an application, we demonstrate the transcendence of some continued fractions, a typical one being of the form $[0,u_1,u_2,\dots]$ with $u_m=1+\lfloor m\theta\rfloor\Mod n$, $n\geq2$, and $\theta$ an irrational number which satisfies any of a given set of conditions.
Given a graph G on n vertices with average degree d, form a random subgraph Gp by choosing each edge of G independently with probability p. Strengthening a classical result of Margulis we prove that, if the edge connectivity k(G) satisfies k(G) [Gt] d/log n, then the connectivity threshold in Gp is sharp. This result is asymptotically tight.
We study a model motivated by the minesweeper game. In this model one starts with the percolation of mines on the lattice ℤd, and then tries to find an infinite path of mine-free sites. At every recovery of a free site, the player is given some information on the sites adjacent to the current site. We compare the parameter values for which there exists a strategy such that the process survives to the critical parameter of ordinary percolation. We then derive improved bounds for these values for the same process, when the player has some complexity restrictions in computing his moves. Finally, we discuss some monotonicity issues which arise naturally for this model.
This paper introduces a split-and-merge transformation of interval partitions which combines some features of one model studied by Gnedin and Kerov [12, 11] and another studied by Tsilevich [30, 31] and Mayer-Wolf, Zeitouni and Zerner [21]. The invariance under this split-and-merge transformation of the interval partition generated by a suitable Poisson process yields a simple proof of the recent result of [21] that a Poisson–Dirichlet distribution is invariant for a closely related fragmentation–coagulation process. Uniqueness and convergence to the invariant measure are established for the split-and-merge transformation of interval partitions, but the corresponding problems for the fragmentation–coagulation process remain open.
We present improved lower and upper bounds for the time constant of first-passage percolation on the square lattice. For the case of lower bounds, a new method, using the idea of a transition matrix, has been used. Numerical results for the exponential and uniform distributions are presented. A simulation study is included, which results in new estimates and improved upper confidence limits for the time constants.
For two stochastically dependent random variables X and Y taking values in {0,…, m−1}, we study the distribution of the random residue U = XY mod m. Our main result is an upper bound for the distance Δm = supx∈[0,1] [mid ] P(U/m [les ] x)−x[mid ]. For independent and uniformly distributed X and Y, the exact distribution of U is derived and shown to be stochastically smaller than the uniform distribution on {0,…, m−1}. Moreover, in this case Δm is given explicitly.
Let q be an integer with q [ges ] 2. We give a new proof of a result of Erdös and Turán determining the proportion of elements of the finite symmetric group Sn having no cycle of length a multiple of q. We then extend our methods to the more difficult case of obtaining the proportion of such elements in the finite alternating group An. In both cases, we derive an asymptotic formula with error term for the above mentioned proportion, which contains an unexpected occurrence of the Gamma-function.
We apply these results to estimate the proportion of elements of order 2f in Sn, and of order 3f in An and Sn, where gcd(2, f) = 1, and gcd(3, f) = 1, respectively, and log f is polylogarithmic in n. We also give estimates for the probability that the fth power of such elements is a transposition or a 3-cycle, respectively. An algorithmic application of these results to computing in An or Sn, given as a black-box group with an order oracle, is discussed.
We consider k-uniform set systems over a universe of size n such that the size of each pairwise intersection of sets lies in one of s residue classes mod q, but k does not lie in any of these s classes. A celebrated theorem of Frankl and Wilson [8] states that any such set system has size at most (ns) when q is prime. In a remarkable recent paper, Grolmusz [9] constructed set systems of superpolynomial size Ω(exp(c log2n/log log n)) when q = 6. We give a new, simpler construction achieving a slightly improved bound. Our construction combines a technique of Frankl [6] of ‘applying polynomials to set systems’ with Grolmusz's idea of employing polynomials introduced by Barrington, Beigel and Rudich [5]. We also extend Frankl's original argument to arbitrary prime-power moduli: for any ε > 0, we construct systems of size ns+g(s), where g(s) = Ω(s1−ε). Our work overlaps with a very recent technical report by Grolmusz [10].
Let G be a connected graph that is 2-cell embedded in a surface S, and let G* be its topological dual graph. We will define and discuss several matroids whose element set is E(G), for S homeomorphic to the plane, projective plane, or torus. We will also state and prove old and new results of the type that the dual matroid of G is the matroid of the topological dual G*.
This work is concerned with basic structural properties of first-order hyperbolic systems with source terms divided by a small parameter ε. We identify a relaxation criterion necessary for the solution sequences indexed with ε to have reasonable limits as ε goes to zero. This relaxation criterion is shown to imply hyperbolicity of the reduced systems governing the limits. Moreover, we introduce a so-called GC-stability theory and strengthen the hyperbolicity result. The latter shows that there are no linearly stable hyperbolic relaxation approximations for non-hyperbolic conservation laws.
The connection between the discrete and the continuous coagulation–fragmentation models is investigated. A weak stability principle relying on a priori estimates and weak compactness in L1 is developed for the continuous model. We approximate the continuous model by a sequence of discrete models and, writing the discrete models as modified continuous ones, we prove the convergence of the latter towards the former with the help of the above-mentioned stability principle. Another application of this stability principle is the convergence of an explicit time and size discretization of the continuous coagulation-fragmentation model.
In this paper we will study solution pairs $(u,D)$ of the minimal surface equation defined over an unbounded domain $D$in $R^2$, with $u=0$ on $\partial D$. It is well known that there are severe limitations on the geometry of $D$; forexample $D$ cannot be contained in any proper wedge (angle less than $\pi$). Under the assumption of sublinear growthin a suitably strong sense, we show that if $u$ has order of growth $\alpha$ in the sense of complex variables, thenthe ‘asymptototic angle’ of $D$ must be at least $\pi/\alpha$. In particular, there are at most two such solution pairsdefined over disjoint domains. If $\alpha<1$ then $u$ cannot change sign and there is no other disjoint solution pair.This result is sharp as can be seen by a suitable piece of Enneper’s surface which has order$\alpha=\tfrac{2}{3}$ and asymptotic angle $\tfrac{3}{2}\pi$.
We introduce the totally multiplicatively prime algebras as those normed algebras for which there exists a positive number K such that K‖F‖‖a‖ ≤ ‖WF,a‖ for all F in M(A) (the multiplication algebra of A) and a in A, where WF,a denotes the operator from M(A) into A defined by WF,a(T) = FT(a) for all T in M(A). These algebras are totally prime and their multiplication algebra is ultraprime. We get the stability of the class of totally multiplicatively prime algebras by taking central closure. We prove that prime H*-algebras are totally multiplicatively prime and that the ℓ1-norm is the only classical norm on the free non-associative algebras for which these are totally multiplicatively prime.
The stability of linear initial–boundary-value problems for hyperbolic systems (with constant coefficients) is linked to the zeros of the so-called Lopatinskii determinant. Depending on the location of these zeros, problems may be either unstable, strongly stable or weakly stable. The first two classes are known to be ‘open’, in the sense that the instability or the strong stability persists under a small change of coefficients in the differential operator and/or in the boundary condition.
Here we show that a third open class exists, which we call ‘weakly stable of real type’. Many examples of physical or mathematical interest depend on one or more parameters, and the determination of the stability class as a function of these parameters usually needs an involved computation. We simplify it by characterizing the transitions from one open class to another one. These boundaries are easier to determine since they must solve some overdetermined algebraic system.
Applications to the wave equation, linear elasticity, shock waves and phase boundaries in fluid mechanics are given.
We give a topological criterion for the minimality of the strong unstable (or stable) foliation of robustly transitivepartially hyperbolic diffeomorphisms.
As a consequence we prove that, for $3$-manifolds, there is an open and dense subset of robustly transitivediffeomorphisms (far from homoclinic tangencies) such that either the strong stable or the strong unstable foliation isrobustly minimal.
We also give a topological condition (existence of a central periodic compact leaf) guaranteeing (for an open and densesubset) the simultaneous minimality of the two strong foliations.
We use singularity theory to classify forced symmetry-breaking bifurcation problemswhere f1 is O(2)-equivariant and f2 is Dn-equivariant with the orthogonal group actions on z ∈ R2. Forced symmetry breaking occurs when the symmetry of the equation changes when parameters are varied. We explicitly apply our results to the branching of subharmonic solutions in a model periodic perturbation of an autonomous equation and sketch further applications.
We prove that the two-dimensional Brown–Ravenhall operator is bounded from below when the coupling constant is below a specified critical value—a property also referred to as stability. As a consequence, the operator is then self-adjoint. The proof is based on the strategy followed by Evans et al. and Lieb and Yau, with some relevant changes characteristic of the dimension. Our analysis also yields a sharp Kato inequality.
In this paper we study the existence, non-existence and simplicity of the first eigenvalue of the perturbed Hardy-Sobolev operator under various assumptions on the perturbation q. We study the asymptotic behaviour of the first eigenfunction near the origin when the perturbation q is q = s, 0 < s < 1. We will also establish the best constant in a Hardy-Sobolev inequality proved by Adimurthi et al.
We study a class of quasilinear elliptic problems with diffusion matrices that have at least one diagonal coefficient that blows up for a finite value of the unknown; the other coefficients being continuous with respect to the unknown (without any growth assumption). We introduce two equivalent notions of solutions for such problems and we prove an existence result in these frameworks. Under additional local assumptions on the coefficients, we also establish the uniqueness of the solution. In that case, and when the non-diagonal coefficients are bounded, this unique (generalized) solution is also the unique weak solution strictly less than the value where the diagonal coefficient blows up.