To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Minimal submanifolds of a Euclidean space are contained in a much larger class of submanifolds, namely in the class of submanifolds of finite type. Submanifolds of finite type were introduced about a decade ago by B. Y. Chen in [2]; the first results on this subject have been collected in the books [2], [3].
Although all the coefficients in the equation of a plane algebraic curve may be real numbers, it by no means follows that the equations of all its bitangents are real. But Plücker perceived that this could happen for the 28 bitangents of a nonsingular plane quartic. Where can this be observed in a body of 28 explicit linear equations? This modest note affords an example.
where u ∊ Rn, n ≧ 2, and V ∊ C2(Rn∖e, R) is a potential having an absolute maximum at 0 and such that V(x) → − ∞ as x → e. We prove that, under some conditions on V, this problem has at least n − 1 geometrically distinct solutions.
Let us consider a pair (S, H) consisting of a closed Riemann surface S and an Abelian group H of conformal automorphisms of S. We are interested in finding uniformizations of S, via Schottky groups, which reflect the action of the group H. A Schottky uniformization of a closed Riemann surface S is a triple (Ώ, G, π:Ώ→S) where G is a Schottky group with Ώ as its region ofdiscontinuity and π:Ώ→S is a holomorphic covering with G ascovering group. We look for a Schottky uniformization (Ώ, G, π:Ώ→S) of S such that for each transformation h in H there exists an automorphisms t of Ώ satisfying h ∘ π = π ∘ t.
An integral representation result is given for the lower semicontinuous envelope of the functional ʃΩf(∇ku) dx on the space BVk(Ω:ℝm) of the integrable functions, whose the f-th derivative in the sense of distributions is a Radon measure with bounded total variation.
Conditions for the existence of a centre in two-dimensional systems are considered along the lines of Darboux. We show how these methods can be used in the search for maximal numbers of bifurcating limit cycles. We also extend the method to include more degenerate cases such as are encountered in less generic systems. These lead to new classes of integrals. In particular, the Kukles system is considered, and new centre conditions for this system are obtained.
The purpose of this paper is to prove the following (nonlinear) mean ergodic theorem: Let E be a uniformly convex Banach space, let C be a nonempty bounded closed convex subset of E and let T: C → C be an asymptotically nonexpansive mapping. If
exists uniformly in r = 0, 1, 2,…, then the sequence {Tnx} is strongly almost-convergent to a fixed point y of T, that is,
The notion of very weak solutions is introduced in this paper in order to solve the boundary value problems for the Laplace operator and for the Lamé system with nonsmooth data in polyhedral domains. A continuity theorem is given for variational solutions of the above problems. This result may be used to solve problems with concentrated loads.
Necessary and sufficient conditions are obtained for the 2-skeleton of the total space of a graph of 2-complexes to be Cockcroft, or L-Cockcroft for some subgroup L of the fundamental group. These conditions are used to construct new examples of Cockcroft and absolutely Cockcroft 2-complexes.
A nonlocal eigenvalue problem of the form u″ + a(x)u + Bu = λu with homogeneous Dirichlet boundary conditions is considered, where B is a rank-one bounded linear operator and x belongs to some bounded interval on the real line. The behaviour of the eigenvalues is studied using methods of linear perturbation theory. In particular, some results are given which ensure that the spectrum remains real. A Sturm-type comparison result is obtained. Finally, these results are applied to the study of some nonlocal reaction–diffusion equations.
Here we extend an arithmetical inequality about multiplicative functions obtained by K. Alladi, P. Erdős and J. D. Vaaler, to include also the case of submultiplicative functions. Also an alternative proof of an extension of a result used for this purpose is given.
Let Uk, for integral k, denote the set {1,2,…, k}, and Vk denote the collection of all subsets of Uk. In the following, all unspecified sets like A,…, are assumed to be subsets of Uk. Let σ = {Si} and τ = {Tj} be two given collections of subsets of Uk. Set
and
Let ′ denote complementation in Uk (but for in the proof of (3) where it denotes complementation in C). For any collection p of subsets of Uk, let p′ denote the collection of the complements of members of p.
Let A be a strong independence algebra of infinite rank m. Let ℒ(A) be the inverse monoid of all local automorphisms of A. The Baer–Levi semigroup B over the algebra A is defined to be the subsemigroup of ℒ(A) consisting of all the elements α with dom α = A and corank im α = m. Let Km be the subsemigroup of ℒ(A) generated by B−1B. Then Km is inverse and it is generated (as a semigroup) by N2, the subset of ℒ(A) consisting of all nilpotent elements of index 2. The 2-nilpotent depth, Δ2(Km) of Km is defined to be the smallest positive integer t such that Km = N2∪…∪(N2)t. In fact, Δ2(Km) is either 2 or 3 and a criterion is found which distinguishes between the two cases.
If N denotes the set of all nilpotents in ℒ(A), then the subsemigroup generated by N is also Km. In fact, Km is proved to be exactly N2.
We consider the following problem: Let P be a monic polynomial of degree n with complex coefficients. What can be the maximum ‘size’ of a monic divisor Q of P? Here the size of a polynomial R is the maximum ||R|| of the moduli of its values on the unit circle. In 1991, B. Beauzamy proved that there exists a divisor Q with ||Q|| ≧ e∈n−1, ∈ = 0.0019, when all the roots of P belong to the unit circle. Using a very recent result of D. Boyd, we obtain a general result which, in the same case, gives ||Q||≧βn; here β = 1.38135 … is optimal.
In this paper we look for closed geodesies on a noncomplete Riemannian manifold ℳ. We prove that if ℳ has convex boundary, then there exists at least one closed nonconstant geodesic on it.
We establish the existence of isolated local minimisers to the problem of partitioning certain two-dimensional domains into three subdomains having least interfacial area. The solution we exhibit has the special property that the three boundaries of the minimising partition meet at a common point or “triple junction”. The configuration represents a likely candidate for a stable equilibrium in the dynamical problem of two-dimensional motion by curvature and also leads to the existence of local minimisers possessing triple junction structure to the energy associated with the vector Ginzburg–Landau and Cahn–Hilliard evolutions.
For a finite semilattice S, is is proved that if every noninvertible endomorphism is a product of idempotents, then S is a chain; the converse was proved, independently, by A. Ya. Aĭzenštat and J. M. Howie. For a finite pseudocomplemented semilattice S, with pseudocomplementation regarded as a unary operation, it is proved that all noninvertible endomorphisms are products of idempotents if and only if S is Boolean or a chain.
It is shown that the free product of two residually finite combinatorial strict inverse semigroups in general is not residually finite. In contrast, the free product of a residually finite combinatorial strict inverse semigroup and a semilattice is residually finite.