To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a family of dispersive equations whose simplest representative would be a Benjamin–Bona–Mahony equation with a Burger's type dissipation. The effect of possible unevenness of the bottom surface is considered and our main result gives decay rates of the solutions in Lβ(ℝ) spaces, 2 ≦ β ≦ + ∞.
This brief note has the threefold purpose of improving on an earlier theorem of the author [4], gathering together some results on normal closures (with rank restrictions) which are more or less implicit in the literature and providing a few examples which indicate the impossibility of improving these results in one way or another. The proofs are mostly routine and usually omitted. Most of the relevant background material can be found in [3], and references to these results will often indicate that minoradditional details (an easy induction, for example) are required. Throughout, 〈x〉G will denote the normal closure of the subgroup 〈x〉 of the group G. The usual notation is used for upper central and derived series.
We consider abstract initial boundary value problems in a spirit similar to that of the classical theory of linear semigroups. We assume that the solution u at time t is given by u(t) = S(t) ξ + V(t)g, where ξ and g are respectively the initial and boundary data and S(t) and V(t) are linear operators. We take as a departing point the functional equations satisfied by the propagators S and V. We discuss conditions under which a pair (S, V) describes the solution of an abstract differential initial boundary value problem. Several examples are provided of parabolic and hyperbolic problems that can be accommodated within the abstract theory. We study the backward Euler's method for the time integration of the problems considered.
Nonstandard analysis is used, in this paper, to give a construction of a Wiener -process Wt, t ∈ [0, ∞). From this, a hyperfinite representation of stochastic integrals for operatorvalued processes with respect to Wt is derived, and existence theorems in the spirit of Keisler are proved for (infinite-dimensional) stochastic differential equations of Itô's type one and a certain kind of Itô's type two, via regularity of hyperfinite stochastic difference equations.
This paper studies the surface of constant mean curvature on a semi-infinite strip, and shows by means of a first-order differential inequality that the solution in a given measure either becomes asymptotically unbounded at least to polynomial order, or decays at most exponentially to the solution of an associated one-dimensional problem. A proof is also presented for uniqueness in the class of functions having bounded gradient and subject to specified growth conditions for large values of the longitudinal distance. Extensions of these results to the whole strip and to more general types of equations are also described.
The paper is concerned with the asymptotic behaviour of the solutions to a nonlocal evolution equation which arises in models of phase separation. As in the Allen–Cahn equations, stationary spatially nonhomogeneous solutions exist, which represent the interface profile between stable phases. Local stability of these interface profiles is proved.
A characterisation is obtained of all the regularly solvable operators and their adjoints generated by general ordinary quasidifferential expressions in The domains of these operators are described in terms of boundary conditions involving the solutions of M[u] = λwu and the adjoint equation at both singular end-points a and b. These results are an extension of those proved in [3], by Evans and Ibrahim, to the case of two singular end-points of the interval (a, b), and a generalisation of those in [10] and [13] concerning selfadjoint and J-selfadjoint differential operators, where J denotes complex conjugation.
We study the existence of changing sign solutions of an elliptic semilinear boundary value problem, which arises as a limiting equation of the two species Lotka–Volterra competing equations system. Using variational methods and a result of D'Aujourd'hui, we find conditions which are both sufficient and necessary for this existence problem.
We study the development of concentration profiles in a semi-infinite slab of semiconductor material after impurities have been implanted uniformly through the slab, under the assumption that, at the face of the slab, no impurities can pass and the vacancy concentration is kept at its equilibrium value. It is shown that profiles of self-similar form exist, and their qualitative shape, as well as their asymptotic properties far from the face of the slab, are determined.
Let ℋ be a complex Hilbert space and B(ℋ) be the algebra of all bounded linear opeators on ℋ. An operator T ∈ B(ℋ) is said to be p-hyponormal if (T*T)p–(TT*)p. If p = 1, T is hyponormal and if p = ½ is semi-hyponormal. It is well known that a p-hyponormal operator is p-hyponormal for q≤p. Hyponormal operators have been studied by many authors. The semi-hyponormal operator was first introduced by D. Xia in [7]. The p-hyponormal operators have been studied by A. Aluthge in [1]. Let T be a p-hyponormal operator and T=U|T| be a polar decomposition of T. If U is unitary, Aluthge in [1] proved the following properties.
We study the 1-relator relative presentation 〈H, x|xaxbx−1c〉 where H is a group, a, b, c ∈ H, x ∉ H and b, c ≠ 1. We give necessary and sufficient conditions for this presentation to be aspherical apart from two outstanding special cases which remain open.
Let G be any finite group with elementary abelian Sylow 3-subgroups of order 9, and let F be any field of characteristic 3. Then, the Loewy length of the projective cover of the trivial FG-module is at least 5. This lower bound is the best possible.
where is continuous on RN and h(x)≢0. By using Ekeland's variational principle and the Mountain Pass Theorem without (PS) conditions, through a careful inspection of the energy balance for the approximated solutions, we show that the probelm (*) has at least two solutions for some λ* > 0 and λ ∈ (0, λ*). In particular, if p = 2, in a different way we prove that problem (*) with λ ≡ 1 and h(x) ≧ 0 has at least two positive solutions as
We consider the nonlinear eigenvalue problem posed by a parameter-dependent semilinear second-order elliptic equation on a bounded domain with the Dirichlet boundary condition. The coefficients of the elliptic operator are bounded measurable functions and the boundary of the domain is only required to be regular in the sense of Wiener. The main results establish the existence of an unbounded branch of positive weak solutions.
Let G be a group and H a subgroup of finite index in G. Then of course H contains a G-invariant subgroup C such that G/C is finite. In attempting to establish results of a similar nature, where “finite” is replaced by, for example, “finitely generated”, one notices immediately that a quite differently stated hypothesis is required. One reasonable approach would be to consider subgroups H which are “f.g. embedded” in G—indeed, the notion of a polycyclic embedding was utilised by P. Hall in [1].
We consider the bifurcation of positive solutions of the two-point boundary value problem
where λ> 0 is a real bifurcation parameter, and f ∊ C2 satisfies (fl) f(0) < 0, (f2) f′(s) > 0 for s > 0, (f3) f″(s) < 0 for s > 0 and (f4) limS→+∞f(s) = M where 0 < M ≦+∞. This problem has been studied by Casto and Shivaji under two additional hypotheses (f5) lims→+∞sf′(s) = 0, and (f6)f(θ)/θ < f′(θ), where θ is a positive number satisfying Assuming (fl)−(f6), Castro and Shivaji obtain some existence and nonexistence results and hence partial information on the bifurcation diagram, and they conjecture that this problem has at most two positive solutions. We prove this conjecture. Furthermore, we are able to generalise and improve their results under hypotheses (fl)−(f4). As a corollary, we show that there exists μ1 > 0 such that there exist no positive solutions for 0 <λ <μ1 and at most two positive solutions for μ1≦λ< + ∞, which improves a result of Brunovsky and Chow.
In this paper the Hausdorff dimension of systems of real linear forms which are simultaneously small for infinitely many integer vectors is determined. A system of real linear forms,
where ai, xij∈ℝ, 1 ≤i≤m, 1≤j≤n will be denoted more concisely as
where a∈⇝m, X∈ℝmn and ℝmn is identified with Mm × n(ℝ), the set of real m × n matrices. The supremum norm of any vector in k dimensional Euclidean space, ℝk will be denoted by |v|. The distance of a point a from a set B, will be denoted by dist (a, B) = inf {|a − b|: b ∈ B}.