To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
so that Ŝ, the universal covering surface of S, is hyperbolic. We can then uniformize S by a discrete, nonabelian group Γ1 of Möbius transformations of the upper half-plane ℋ. It follows that N1 = NΩ(Γ1) is discrete; here N1is the normalizer of Γ in Ω, the group of (conformal) automorphisms of ℋ. An automorphism of S can be lifted to a coset of Nl/Γl. Hence C(S), the group of automorphisms of S, is isomorphic to Nl/Γ1. The order of C = C(S) equals the index of Γ1 in N1, which in turn equals ⃒Γ1⃒ / ⃒Nl⃒, where ⃒Nl⃒ is the hyperbolic area of a fundamental region of Nl. Since Γ1 uniformizes a surface, we have ⃒Γ1⃒ = 4π(g – 1), while, by Siegel's results [7], ⃒N1 ⃒ ≧ π/21 and N1 can only be the triangle group (2, 3, 7). Hence in all cases the order of C(S) is at most 84(g–1), an old result of Hurwitz [1]. The surfaces that permit a maximal automorphism group (= automorphism group of maximum order) can therefore be obtained by studying the finite factor groups of (2, 3, 7). Such a treatment, purely algebraic in nature, has been promised by Macbeath [5].
The asymptotic behavior of the solutions of ordinary nonlinear differential equations will be considered here. The growth of the solutions of a differential equation will be discussed by establishing criteria to determine when the differential equation does not possess a solution that is an element of the space Lp(0, ∞)(p ≧ 1).
Applying Hopkins's Theorem asserting that each unitary right Artinian ring is right Noetherian, G. Köthe and K. Shoda proved the following theorem (cf. Köthe [7], p. 360, Theorem 1 and p. 363, Theorem 5): If R is a unitary right Artinian ring, then the following statements hold:
(i) Each nilpotent subring of R is contained in a maximal nilpotent subring of R.
(ii) The intersection of all maximal nilpotent subrings of R is the maximal nilpotent twosided ideal of R.
(iii) All maximal nilpotent subrings of R are conjugate.
Let f(x) denote a polynomial of degree d defined over a finite field k with q = pnelements. B. J. Birch and H. P. F. Swinnerton-Dyer [1] have estimated the number N(f) of distinct values of y in k for which at least one of the roots of
is in k. They prove, using A. Weil's deep results [12] (that is, results depending on the Riemann hypothesis for algebraic function fields over a finite field) on the number of points on a finite number of curves, that
where λ is a certain constant and the constant implied by the O-symbol depends only on d. In fact, if G(f) denotes the Galois group of the equation (1.1) over k(y) and G+(f) its Galois group over k+(y), where k+ is the algebraic closure of k, then it is shown that λ depends only on G(f), G+(f) and d. It is pointed out that “in general”
We shall establish here a new relation between the classnumber h of an algebraic number field K and the signature of its group of units Y.
Write dim2(A) for the number of even invariants of a finite Abelian group A. Denote by C the absolute classgroup of K (ideals modulo principal ideals), and by P the quotient group of principal ideals modulo totally positive principal ideals.
Let Q(x, y) = ax2 + bxy + cy2 be a positive definite quadratic form with discriminant d = b2 – 4ac. The Epstein zeta function associated with Q is given by
where Σ′ means the sum is over all pairs (x, y) of integers not both zero, and as usual, s = σ + it.
1. G. B. Jeffery [1] investigated the axisymmetrical flow of an incompressible viscous fluid caused by two spheres rotating slowly and steadily in the liquid about their line of centres. The numerical results he gave were for spheres of equal radii.
The present problem is to investigate what happens when the spheres touch each other either externally or internally and when they are unequal in size. This problem could be approached by taking a limit of Jeffery's solution, but in fact it will be more convenient to use a co-ordinate system different from Jeffery's and, of course, his results would not yield information about unequal spheres.
A little over a hundred years ago E. B. Christoffel in [6] asserted a proposition concerning the determination of a surface in Euclidean 3-space from a specification of its mean radius of curvature as a function of the outer normal direction. In that paper an assumption was made which limited the class of surfaces considered to be boundaries of convex bodies. The argument rested on the construction of functions describing the co-ordinates of surface points corresponding to outer normal directions as solutions of certain partial differential equations involving the mean radius of curvature. However, it was pointed out by A. D. Alexandrov [1], [2], that the conditions laid down by Christoffel on the preassigned mean radius of curvature function were not sufficient to ensure that that function actually be a mean radius of curvature function of a closed convex surface. Hence Christofrel's discussion is incomplete. Different and similarly incomplete treatments of Christoffelés problem were given by A. Hurwitz [9], D. Hilbert [8], T. Kubota [11], J. Favard [7], and W. Suss [13]. A succinct discussion of the question is in Busemann [5] but the footnote on p. 68, intended to rectify the discussion in Bonnesen and Fenchel [4], is also not correct. A sufficient, but not necessary condition was found by A. V. Pogorelov in [12].
Recent work on the mechanics of interacting continua has led to the formulation of linearized theories governing thermo-mechanical disturbances of small amplitude in mixtures of an elastic solid and a viscous fluid and of two elastic solids. These theories are well posed in the crude sense that the number of field and constitutive equations equals the number of field quantities to be determined, but the proper posing of initial and initial-boundary-value problems has not been studied. In this paper we prove, for both types of mixtures, the uniqueness of sufficiently smooth solutions of the field and constitutive equations subject to initial and boundary data which include conditions of direct physical significance. Sufficient conditions for uniqueness are given in the form of inequalities on the material constants appearing in the constitutive equations. These restrictions fall into two categories, one arising from the application of the entropy-production inequality, and therefore intrinsic to the theory, and the other representing constraints on the Helmholtz free energy of the mixture. Our results include as special cases uniqueness theorems for unsteady linearized compressible flow of a heat-conducting viscous fluid and for the linear theory of thermoelasticity.
Throughout this note X will denote a completely regular Hausdorff space and ℬ the σ-algebra of Borel sets in X (see §2 for terminology). For x in X we may define the atomic Borel measure δx to be the unit mass placed at the point x. Observe, however, that the example of Dieudonné [3; §52, example 10] shows that not all atomic measures need have this form. The problem investigated in this note is the existence of finite Borel measures other than the atomic measures. In §3 we show that such a measure necessarily exists on a compact space without isolated points, though we are not able to add to the very meagre supply of examples which are known at the moment. A converse to our result has been given by Rudin [7] and, for completeness, we include a new proof of his result.
In 1953 Erdős† proved in a characteristically ingenious manner that an irreducible‡; integral polynomial f(n) of degree r ≥ 3 represents (r – 1)-free integers (that is to say integers not divisible by an (r – 1)th power other than 1) infinitely often, provided that the obvious necessary condition be given that f(n) have no fixed (r – 1)th power divisors other than 1. His method did not, however, give a means for determining an asymptotic formula for N(x), the number of positive integers n not exceeding x for which f(n) is (r – 1)-free, nor did it even show that the positive integers n for which f(n) is (r – 1)-free had a positive lower density.
1. The purpose of this paper is to give simple proofs for some recent versions of Linnik's large sieve, and some applications.
The first theme of the large sieve is that an arbitrary set of Z integers in an interval of length N must be well distributed among most of the residue classes modulo p, for most small primes p, unless Z is small compared with N. Following improvements on Linnik's original result [1] by Rényi [2] and by Roth [3], Bombieri [4] recently proved the following inequality: Denote by Z(a, p) the number of integers in the set which are congruent to a modulo p.
A well-known theorem of Schauder asserts that a continuous self-map T of a closed convex subset K of a normed linear space X, such that the closure of T(K) is compact, has at least one fixed point. No general method is known for a computation of the fixed point(s) of T.
It was proved in a recent paper† that if au α1, …, αn denote non-zero algebraic numbers and if‡ logαn, …, log αn and and 2πi are linearly independent over the rationals then log α1, …, log αn are linearly independent over the field of all algebraic numbers. Further it was shown that if α1 …, αn are positive real algebraic numbers other than 1 and if β1, …, βn denote real algebraic numbers with 1, β1 …, βn linearly independent over the rationals then is transcendental.
The velocity potential near the boundary of the disturbance is determined for steady supersonic flow past a simple body-and-wing model. It is found that the disturbance decays exponentially as it spreads round the body; the alteration caused by changing the radius of curvature is discussed. A universal formula for the potential away from the fuselage is also derived.
Let f = f (x1, x2,… xn) be an indefinite n-ary quadratic form of signature s and let m+(f), m−(f) denote the infimum of the non-negative values taken by f and —f respectively for integral (x1, x2,…, xn) ≠ (0, 0,…, 0). Furthermore let f satisfy the condition m+ (f) ≠ 0 and let for some integer k. Then Segré [3] has shown that, for n = 2, f must have determinant det (f) satisfying with equality if and only if f is equivalent under an integral unimodular transformation (denoted ˜) to a multiple of the form f1(x, y) = x2−kxy−ky2, while Oppenheim [2] has shown that, for n ≧ 3, is of the order of k2n−2
In this paper we show that whether or not a group admits a lattice-order often depends upon whether or not it possesses a set of subgroups that satisfy certain algebraic conditions. Using these techniques we are able to determine large classes of groups that can be lattice-ordered.