To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tangles offer a precise way to identify structure in imprecise data. By grouping qualities that often occur together, they not only reveal clusters of things but also types of their qualities: types of political views, of texts, of health conditions, or of proteins. Tangles offer a new, structural, approach to artificial intelligence that can help us understand, classify, and predict complex phenomena.This has become possible by the recent axiomatization of the mathematical theory of tangles, which has made it applicable far beyond its origin in graph theory: from clustering in data science and machine learning to predicting customer behaviour in economics; from DNA sequencing and drug development to text and image analysis. Such applications are explored here for the first time. Assuming only basic undergraduate mathematics, the theory of tangles and its potential implications are made accessible to scientists, computer scientists, and social scientists.
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$-vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle.
This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.
Given a graph $F$, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of $F$. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than $n^{-1/3}$ must contain a copy of the Peterson graph, while the previous best result gives the bound $n^{-1/4}$. Moreover, we conjecture that the exponent $1/3$ in our bound is tight. We also construct the densest known pseudorandom $K_{2,3}$-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.
We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.
The $d$-process generates a graph at random by starting with an empty graph with $n$ vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most $d-1$ and are not mutually joined. We show that, in the evolution of a random graph with $n$ vertices under the $d$-process with $d$ fixed, with high probability, for each $j \in \{0,1,\dots,d-2\}$, the minimum degree jumps from $j$ to $j+1$ when the number of steps left is on the order of $\ln (n)^{d-j-1}$. This answers a question of Ruciński and Wormald. More specifically, we show that, when the last vertex of degree $j$ disappears, the number of steps left divided by $\ln (n)^{d-j-1}$ converges in distribution to the exponential random variable of mean $\frac{j!}{2(d-1)!}$; furthermore, these $d-1$ distributions are independent.
The bipartite independence number of a graph $G$, denoted as $\tilde \alpha (G)$, is the minimal number $k$ such that there exist positive integers $a$ and $b$ with $a+b=k+1$ with the property that for any two disjoint sets $A,B\subseteq V(G)$ with $|A|=a$ and $|B|=b$, there is an edge between $A$ and $B$. McDiarmid and Yolov showed that if $\delta (G)\geq \tilde \alpha (G)$ then $G$ is Hamiltonian, extending the famous theorem of Dirac which states that if $\delta (G)\geq |G|/2$ then $G$ is Hamiltonian. In 1973, Bondy showed that, unless $G$ is a complete bipartite graph, Dirac’s Hamiltonicity condition also implies pancyclicity, i.e., existence of cycles of all the lengths from $3$ up to $n$. In this paper, we show that $\delta (G)\geq \tilde \alpha (G)$ implies that $G$ is pancyclic or that $G=K_{\frac{n}{2},\frac{n}{2}}$, thus extending the result of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree $1$, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.
We give algorithms for approximating the partition function of the ferromagnetic $q$-color Potts model on graphs of maximum degree $d$. Our primary contribution is a fully polynomial-time approximation scheme for $d$-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$.
Minkowski decomposability of polytopes is developed via geometric graphs and decomposing functions; recall, a geometric graph is a realisation in $\R^{d}$ of a graph $G$ where distinct vertices of $G$ correspond to distinct points in $\R^{d}$, edges in $G$ correspond to line segments, and no three vertices are collinear. One advantage of this approach is its versatility. The decomposability of polytopes reduces to the decomposability of geometric graphs, which are not necessarily polytopal. And the decomposability of geometric graphs often revolves around the existence of suitable subgraphs or useful properties in the graphs. Section 6.3 is devoted to the classification of polytopes with at most $2d+1$ vertices into composable and decomposable. The chapter concludes with an interlude on polytopes that admit both a decomposable realisation and an indecomposable realisation. It is one of the few places in the book where we deal with a noncombinatorial property. Whereas the combinatorial type of a polytope can have many distinct realisations, here we will be concerned with concrete realisations of the type and their properties.
The {graph} of a polytope is formed by the vertices and edges of the polytope.We often see this graph as an abstract graph and apply methodology from graph theory. A {polytopal graph} is simply a graph of a polytope. Appendix C reviews the relevant graph-theoretical prerequisites. Graphs of 3-polytopes are planar, and thus we review the topological background to study graphs embedded in a topological space. We then study properties of polytopal graphs. We analyse acyclic orientations of graphs of polytopes in Section 3.5; these orientations are related to the shelling orders of the corresponding dual polytopes. We also examine convex realisations of 3-connected planar graphs and Steinitz’s characterisation of graphs of 3-polytopes. The graph of a 3-polytope contains a subdivision of the graph of the 3-simplex, namely $K^{4}$.Section 3.9 shows that this extends to every dimension. Since $K^{5}$ is the 1-skeleton of a $4$-simplex, the nonplanarity of $K^{5}$ is a special case of a theoremof Flores (1934) and Van Kampen (1932) that states the $d$-skeleton of the $(2d+2)$-simplex cannot be embedded in $\R^{2d}$ (Section 3.10).