To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a graph $H$ and a hypercube $Q_n$, $\textrm{ex}(Q_n, H)$ is the largest number of edges in an $H$-free subgraph of $Q_n$. If $\lim _{n \rightarrow \infty } \textrm{ex}(Q_n, H)/|E(Q_n)| \gt 0$, $H$ is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining $\textrm{ex}(Q_n, H)$ and even identifying whether $H$ has a positive or zero Turán density remains a widely open question for general $H$. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.
Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.
For a subset $A$ of an abelian group $G$, given its size $|A|$, its doubling $\kappa =|A+A|/|A|$, and a parameter $s$ which is small compared to $|A|$, we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$. We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling $\kappa$ is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets $A,B$ of $\mathbb{F}_p$ of size at most $\alpha p$ for an appropriate constant $\alpha \gt 0$, one only needs three elements $b_1,b_2,b_3\in B$ to guarantee $|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$. Allowing the use of larger subsets $A'$, we show that for sets $A$ of bounded doubling, one only needs a subset $A'$ with $o(|A|)$ elements to guarantee that $A+A'=A+A$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.
For graphs $G$ and $H$, the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$. A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge.
Recently, Conlon, Fox, and Wigderson conjectured that for any $0\lt \alpha \lt 1$, the random lower bound $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ is not tight. In other words, there exists some constant $\beta \gt (\sqrt{\alpha }+1)^2$ such that $r(B_{\lceil \alpha n\rceil },B_n)\ge \beta n$ for all sufficiently large $n$. This conjecture holds for every $\alpha \lt 1/6$ by a result of Nikiforov and Rousseau from 2005, which says that in this range $r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ for all sufficiently large $n$.
We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every $1/4\leq \alpha \leq 1$. Moreover, we show that for any $1/6\leq \alpha \le 1/4$ and large $n$, $r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$, where the inequality is asymptotically tight when $\alpha =1/6$ or $1/4$. We also give a lower bound of $r(B_{\lceil \alpha n\rceil }, B_n)$ for $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.
This chapter gives a quick tour of classic material in univariate analytic combinatorics, including rational and meromorphic generating functions, Darboux’s method, the transfer theorems of singularity analysis, and saddle point methods for essential singularities.
This appendix contains a compressed version of standard graduate topics in topology such as chain complexes, homology, cohomology, relative homology, and excision.
This chapter develops methods to compute asymptotics of multivariate Fourier–Laplace integrals in order to derive general saddle point approximations for use in later chapters. Our approach uses contour deformation, differing from common treatments relying on integration by parts: this requires analyticity rather than just smoothness but is better suited to integration over complex manifolds.
This chapter gives a high-level overview of analytic combinatorics in several variables. Stratified Morse theory reduces the derivation of coefficient asymptotics for a multivariate generating function to the study of asymptotic expansions of local integrals near certain critical points on the generating function’s singular set. Determining exactly which critical points contribute to asymptotic behavior is a key step in the analysis . The asymptotic behavior of each local integral depends on the local geometry of the singular variety, with three special cases treated in later chapters.
This first chapter motivates our detailed study of the behavior of multivariate sequences, and overviews the techniques we derive using the Cauchy Integral Formula, residues, topological arguments, and asymptotic approximations. Basic asymptotic notation and concepts are introduced, including the background necessary to discuss multivariate expansions.
This chapter derives asymptotics determined by a critical point where the singular variety is locally smooth: the generic situation which arises most commonly in practice. Several explicit formulae for asymptotics are given.
This chapter concludes the book. It contains a survey of the state of analytic combinatorics in several variables, including problems on the boundary of our current knowledge.
This chapter contains a variety of examples deriving asymptotics of generating functions taken from the research literature, illustrating the power of analytic combinatorics in several variables.
This appendix presents a collection of key results on Morse theory, intersection classes, and the computation of Leray residue forms, specialized to the most important local geometries treated in the book.