To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It was on March 20, 1984, that I wrote to Herb Ryser and proposed that we write together a book on the subject of combinatorial matrix theory. He wrote back nine days later that “I am greatly intrigued by the idea of writing a joint book with you on combinatorial matrix theory. … Ideally, such a book would contain lots of information but not be cluttered with detail. Above all it should reveal the great power and beauty of matrix theory in combinatorial settings. … I do believe that we could come up with a really exciting and elegant book that could have a great deal of impact. Let me say once again that at this time I am greatly intrigued by the whole idea.” We met that summer at the small Combinatorial Matrix Theory Workshop held in Opinicon (Ontario, Canada) and had some discussions about what might go into the book, its style, a timetable for completing it, and so forth. In the next year we discussed our ideas somewhat more and exchanged some preliminary material for the book. We also made plans for me to come out to Caltech in January, 1986, for six months in order that we could really work on the book. Those were exciting days filled with enthusiasm and great anticipation.
Herb Ryser died on July 12, 1985. His death was a big loss for me. Strange as it may sound, I was angry. Angry because Herb was greatly looking forward to his imminent retirement from Caltech and to our working together on the book. In spite of his death and as previously arranged, I went to Caltech in January of 1986 and did some work on the book, writing preliminary versions of what are now Chapters 1, 2, 3, 4, 5 and 6. As I have been writing these last couple of years, it has become clear that the book we had envisioned, a book of about 300 pages covering the basic results and methods of combinatorial matrix theory, was not realistic.
Let F denote a family of analytic functions in the unit disk Δ. Suppose that one has a “sharp” estimate on the almost everywhere radial variation of functions in the class Δ. We prove that if Δ is contained in the Nevanlinna class N then the estimate will be “sharp” in the algebra A of functions analytic in Δ and continuous in Δ.
Let X be a reflexive Banach space. This article presents a number of new characterizations of the topology of Mosco convergence TM for convex sets and functions in terms of natural geometric operators and functional. In addition, necessary and sufficient conditions are given for TM to agree with the weak topology generated by {d(x, C): x є X}, where each distance functional is viewed as a function of the set argument.
We determine infinite products in the field of Laurent series with the property that the truncations of the product yield every second continued fraction convergent of the product. We mention some related examples and specialize to obtain numerical results.
Let K be an algebraic number field, [K: Q] = κ є N; only the case κ > 1 is of interest in this paper. Let f be any non-zero ideal in ZK, the ring of integers of K, and let b be any ray-class (modx f) of K. In this paper we answer a question of P. Erdös (private communication) about the “maximum-growth-rate” of the functions
and
the sum here taken over all ray-classes (modx f), while N(a) is the absolute norm of a. Let
and
where, as usual, for x є R, log+ x - log max {1, x}. We prove
Soit Y un sous-ensemble algébrique de codimension 1 de R'. Une distribution globale (resp. partielle) de signes sur Rn est une application qui associe un signe a chaque composante connexe (resp. à certaines parmi les composantes connexes) de Rn – Y.
This paper is concerned with convex subsets of finite dimensional vtctor spaces, over the field of real scalars. As in [10, p. 244] and [20] we say that a compact convex set A, symmetric about the origin, is reducible, if there is a nonsymmetric closed convex set B for which A = B - B. The latter term denotes the set of all differences, {x-y: x, y є B}. Equivalently, A is reducible if, and only if, A =1/2 (B - B) for some B which is not a translate of A. If the identity A = B - B is only possible when B is centrally symmetric, then A is irreducible. If A is symmetric about a point other than the origin, we can say that it is (ir)reducible when it is the translate of an (ir)reducible set which is symmetric about the origin. It is well known that a parallelotope of any dimension is irreducible [6, Hilfssatz 3], that any 2-dimensional convex body other than a parallelogram is reducible [9, p. 217], and that euclidean balls of any dimension (other than one) are reducible [4, Ch. 7]. For more general convex bodies, the determination of reducibility is not a simple problem. Shephard [20] showed that a set is reducible if, and only if, it has an asymmetric summand, and he used this to study reducibility of polytopes. The main purpose of this paper is to give a new condition, necessary and sufficient for a symmetric polytope to be reducible. This condition may be expressed in the form: does a certain finite family of linear equations have a nontrivial solution? Thus, to determine the reducibility of a given polytope, it suffices to find the rank of some matrix. Using our criterion, we are able to describe some large families of irreducible polytopes. For example, every n- dimensional symmetric polytope with 4n – 2 or fewer vertices is irreducible (unless n = 2). We also establish the existence of irreducible, smooth, strictly convex bodies.
In the part (16-3) of his extensive study on measurability in Banach spaces, Talagrand [12] considered the Banach space C(K) of continuous functions on a dyadic topological space K. He proved that C(K) is realcompact in its weak topology, if, and only if, the topological weight of K is not a twomeasurable cardinal (Theorem 16-3-1). Then he asked for an alternative to a rather complicated proof presented there (p. 214) and posed the problem whether C(K) is measure-compact whenever the weight of K is not a realmeasurable cardinal (Problem 16-3-2).
We improve W. Schmidt's lower bound for the slice (intersection of two halfspheres) discrepancy of point distributions on spheres and show that this estimate is up to a logarithmic factor best possible. It is shown that the slice and spherical cap discrepancies are equivalent for the definition of uniformly distributed sequences on spheres.
Almost seventy years ago Jeffery [1] showed that a finite velocity can result at infinity when the biharmonic equation is solved for the titled problem. Here, we extend his calculations to show that finite vorticity is the more general conclusion, and then indicate a resolution of the apparent paradox.
One may perhaps doubt whether in the geometry of numbers any particular family of lattices deserves such an attention as, for example, BCH codes receive in coding theory. However, only recently a quite interesting family has emerged. The general case of these lattices considered by Rosenbloom and Tsfasman [5, Section 2] parallels Goppa's construction of codes from algebraic curves. Here we shall take a closer look at the case of genus zero where some special features of Goppa's early codes will show up again: There is a lattice Λ (L, g) in n-dimensional euclidean space associated with a subset L of the field, and a polynomial g satisfying g(є) ≠ for all λ є L. For g = zd previously known sphere packings are recovered and generalized. A nonconstructive argument shows that for n → ∞ and some irreducible polynomials g Minkowski's lower packing bound is met (this being not achieved in [5] where q is fixed, but the genus grows; cf. also [4]).
A right S-system over a monoid S is a set A on which S acts unitarily on the right. That is, there is a function A such that (φ,1)φ and (a, st)φ = ((a, s) t)φ for all a є A and for all s, t є S. We shall refer to right S-systems simply as S-systems. It is clear what is meant by S-homomorphism, S-subsystem etc.; further details of the terms used in this Introduction are given in Section 2.
For satellite knots there is a well-known formula which relates the Alexander polynomial of the satellite to those of a companion knot and the corresponding pattern. If &s, &C and &P are the Alexander polynomials of a satellite, companion and pattern respectively then
where is the linking number of P with a meridian of the companion torus (see [BZ], p. 118). Analogous relationships do not exist for other knot polynomials [MS]. This suggests that the existence of the above formula depends more on the geometry underlying the polynomial than on the geometry of the satellite construction.
In this paper two expansions are obtained by contour integration methods for the velocity potential describing two-dimensional time-harmonic surface waves due to a free-surface wave source on water of infinite depth in the presence of surface tension. First the series expansion at r = 0 is found and then the asymptotic expansion as Kr®¥, where K is the wave number for progressive waves and r the radial distance from the source. The corresponding expansions for the more important submerged wave source in terms of the radial distance from the image source in the free surface may then easily be deduced. The latter are required in a number of surface wave problems, particularly those of a short-wave asymptotic nature, and are also relevant in obtaining expansions for finite constant depth.
This article considers the effect of more than one quotient and improves a theorem of Tong which is a generalization of a theorem of Segre on asymmetric approximation.