To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss some propositions of Holmes and Manning relating to the evolution of price in a cobweb market approaching equilibrium. We find in particular that the detailed behaviour of the linear model is quite typical of nonlinear cobweb models.
The Faà di Bruno formulæ for higher-order derivatives of a composite function are important in analysis for a variety of applications. There is a substantial literature on the univariate case, but despite significant applications the multivariate case has until recently received limited study. We present a succinct result which is a natural generalization of the univariate version. The derivation makes use of an explicit integralform of the remainder term for multivariate Taylor expansions.
The high Reynolds number flow past a circular cylinder with a trailing wake region is considered when the wake region is bounded and contains uniform vorticity. The formulation allows only for a single vortex pair trapped behind the cylinder, but calculates solutions over a range of values of vorticity. The separation point and length of the region are determined as outputs. It was found that using this numerical method there is an upper bound on the vorticity for which solutions can be calculated for a given arclength of the cavity. In some cases with shorter cavities, the limiting solutions coincide with the formation of a stagnation point in the outer flow at both separation from the cylinder and reattachment at the end of the cavity.
We prove the existence and regularity of the solution of an initial boundary value problem for viscous incompressible non-homogeneous fluids, using a semi-Galerkin approximation and so-called compatibility conditions.
Daniel et al. [6] analysed the singularity structure of the continuum limit of the one-dimensional anisotropic Heisenberg spin chain in a transverse field and determined the conditions under which the system is nonintegrable and exhibits chaos. We investigate the governing differential equations for symmetries and find the associated first integrals. Our results complement the results of Daniel et al.
A pair of multi-objective programming problems is shown to be symmetric dual by associating a vector-valued infinite game to the given pair. This symmetric dual pair seems to be more general than those studied in the literature.
The wave motion of magnetohydrodynamic (MHD) systems can be quite complicated. In order to study the motion of waves in a perfectly conducting fluid under the influence of an external magnetic field in a stratified medium, we make the simplifying assumption that the pressure is constant (to first order). This is the simplest form of the equations with variable coefficients and is not strongly propagative. Alfven waves are still present. The system is further simplified by assuming that the external field is parallel to the boundary. The Green's function for the operator is constructed and then the spectral family is constructed in terms of generalized eigenfunctions, giving four families of propagating waves, including waves “trapped” in the boundary layer. These trapped waves are interesting, since they are not the relics of surface waves, which do not exist in this context when the boundary layer shrinks to zero thickness no matter what (maximal energy preserving) boundary condition is chosen. We conjecture a similar structure for the full MHD problem.
The Bonhoeffer Van der Pol system is a planar autonomous nonlinear system of differential equations which has been invoked as a qualitative model of physiological states in a nerve membrane. It contains three independent parameters and previous work has only studied a small portion of the parameter space, that part which is thought to be of physiological relevance. Here we give a complete study of the full parameter space, using both theoretical results and numerical solutions.
This paper deals with a minimax control problem for semilinear elliptic variational inequalities associated with bilateral constraints. The control domain is not necessarily convex. The cost functional, which is to be minimised, is the sup norm of some function of the state and the control. The major novelty of such a problem lies in the simultaneous presence of the nonsmooth state equation (variational inequality) and the nonsmooth cost functional (the sup norm). In this paper, the existence conditions and the Pontryagin-type necessary conditions for optimal controls are established.
This paper is concerned with a reinvestigation of the problem of water wave scattering by a wall with multiple gaps by using the solution of a singular integral equation with a combination of logarithmic and power (Cauchy-type) kernels in disjoint multiple intervals. Use of Havelock's expansion of water wave potential reduces the problem to such an integral equation in the horizontal velocity across the gaps. The solution of the integral equation is obtained by utilizing the solutions of Cauchy-type integral equations in (0,∞) and also in multiple disjoint intervals. An explicit expression for the reflection coefficient is obtained for a wall with n gaps and supplemented by numerical results for up to three gaps.
The leading-order interaction of short gravity waves with a dominant long-wave swell is calculated by means of Zakharov's [7] spectral formulation. Results are obtained both for a discrete train of short waves and for a localised wave packet comprising a spectrum of short waves.
The results for a discrete wavetrain agree with previous work of Longuet-Higgins & Stewart [5], and general agreement is found with parallel work of Grimshaw [4] which employed a very different wave-action approach.
Under the appropriate physical hypotheses, the problem of determining the pressure distribution in a gas-filled slider bearing becomes a singular perturbation problem as Λ, the bearing number, tends to infinity. This paper extends the results of an earlier one by the author to consider the case where the film profile has jump discontinuities in slope at points interior to the bearing. Application of the methods of general singular perturbation theory establishes the appropriate existence-uniqueness results for this problem, and a means is devised by which uniformly valid asymptotic approximations to the pressure distribution may be obtained for large values of Λ.
A new derivation of the averaged heat and mass transport equations for two-phase flows is presented. A volume averaging technique is used in which averaging is perform over both phases simultaneously in order to derive equations that describe transport the mixture, rather than transport in each phase. The derivation is particularly applicable to incompressible liquid/solid systems in which the two phases are tightly coupled. An example of the numerical solution of the equations is then presented in which a thermally convecting suspension is modelled. It is seen that large-scale instability can result from the interaction of thermal and compositional density gradients.
Continental shelf waves are examined for side band instability. It is shown that a modulated shelf wave is described by a nonlinear Schrödinger equation, from which the stability criterion is derived. Long shelf waves are stable to side band modulations, but as the wavenumber is increased there are regions of instability (in wavenumber space). A change of stability occurs at each long wave resonance, defined by the condition that the group velocity of the shelf wave equals a long wave speed. Equations describing the long wave resonance are derived.
In this paper various wave motions in water of infinite depth containing vertical porous boundaries are determined when the water is of infinite extent on one or both sides. Initially surface tension is ignored and simple solutions for incident waves are obtained before going on to harder wave source and wave-maker solutions. A reduction method is developed to obtain solutions for two-sided boundaries from those for one-sided, which are obtained by standard techniques. The effect of surface tension that precludes simple solutions is also considered, although a present lack of information on dynamical edge behaviour for porous boundaries means that the formal mathematical solutions must be left in terms of arbitrary edge constants. In conclusion, some solutions are noted for finite depth.
In this paper, a model for lateral dispersion in open-channel flow is studied involving a diffusion equation which has a nonlinear term describing the effect of buoyancy. The model is used to investigate the interaction of two buoyant pollutant plumes. An approximate analytic technique involving Hermite polynomials is applied to the resulting PDEs to reduce them to a system of ODEs for the centroids and widths of the two plumes. The ODEs are then solved numerically. A rich variety of behaviour occurs depending on the relative positions, widths and strengths of the initial discharges. It is found that for two plumes of equal strength and width discharged side-by-side, the plumes move apart and the rate of spreading is inhibited by their interaction, whereas when one plume is initially much wider than the other, both plumes tend to drift to the side of the narrower plume. Finally, the PDEs are solved numerically for two sets of initial conditions and a comparison is made with the ODE solutions. Agreement is found to be good.