To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New exact solutions are presented for nonlinear diffusion and convection on a finite domain 0 ≤ z ≤ 1. These solutions are developed for the conditions of constant fluxes at both boundaries z = 0 and z = 1. In particular, solutions for the flux QL at the lower boundary z = 1, being a multiple of the flux Qs at the surface z = 0, (that is QL = aQs, where a = constant), are presented. Solutions for any constant, a, are given for an initial condition which is independent of space z. For the special cases (i) a = 1, and (ii) Qs = 0 and hence QL = 0, solutions are given for an initial condition which has an arbitrary dependence on z.
This paper is concerned with the injection moulding process, in which hot molten plastic is injected under high pressure into a thin cold mould. Assuming that the velocity and temperature profiles across the mould maintain their shape, a simple steady state model to describe the behaviour of a Newtonian fluid during the filling stage is developed. Various phenomena of the process are examined, including the formation of a layer of solid plastic along the walls of the mould, and the relationship between the flux of liquid plastic through the mould and the average pressure gradient along the mould. In any given situation, it is shown that there is a range of pressures and injection temperatures which will give satisfactory results.
The orthogonal coordinate systems ξi(i = 1, 2, 3) are determined, in which the gneralised toroidal and poloidal fields, defined respectively by T{T} = ∇ × {T∇ξ1} and S{S} = ∇ × T{S}, have the following three properties:
GP1 Decoupling of the vector Helmholtz equation: There exist linear differential operators L1 and L2 such that Hu = 0, where H is the vector Helmholtz operator [see equation (1)] and u = T{T} + S {S}, if and only if L1T = 0 and L2S = 0.
GP2 Orthogonality
GP3 Closure: ∇ × S{S} is a T field.
Two choices of T and S fields are considered: type I fields with potentials T and S, which may depend on ξ1, ξ2 and ξ3, and type II fields with ξ1-independent potentials. It is shown that properties GP1–GP3 only hold for type I fields in spherical and cylindrical coordinate systems, and for type II fields in azimuthal and cylindrical coordinate systems with axisymmetric and two-dimensional potentials, respectively. Analogues of GP1 for the vector wave and diffusion equations, and the Navier equation of linear elasticity, are also only true in the same four cases. Generalisations of type I and II T and S fields to arbitrary coordinate systems are indicated.
Strong system equivalence is defined for polynomial realizations of a rational matrix. It is shown that any polynomial realization is strongly system equivalent to a generalized state-space realization, and two generalized state-space realizations are strongly system equivalent if and only if they are constant system equivalent.
The square-root fixed-interval discrete-time smoother has been used extensively in discrete recursive estimation since it was first developed by Rauch, Tung and Streibel [10]. Various people, for example Bierman [2], [3], have recognized the inherent instability in employing this kind of smoother in its original form; they have investigated implementing the recursion more stably. Bierman's paper [3] is one such contribution. In this paper we plan to present a more comprehensive development of Bierman's approach, and to show that this algorithm can be implemented more stably as a square-root smoother. Throughout this paper the fixed-interval discrete-time smoother will be referred to as the RTS smoother. Numerical results are given for the usual form of the RTS smoother, Bierman's algorithm and our square-root formulation of his algorithm. These confirm that the square-root formulation is more desirable than Bierman's algorithm, which performs better than the usual implementation of the RTS smoother.
How should a vehicle he driven to minimise fuel consumption? In this paper we consider the case where a train is to be driven along a straight, level track, but where speed limits may apply over parts of the track. The journey is to be completed within a specified time using as little fuel as possible.
For a journey without speed limits, the optimal driving strategy typically requires full power, speed holding, coasting and full braking, in that order. The holding speed and braking speed can be determined from the vehicle characteristics and the time available to complete the journey. If the vehicle has discrete control settings, the holding phase should be approximated by alternate coast and power phases between two critical speeds.
For a journey with speed limits, a similar strategy applies. For each given journey time there is a unique holding speed. On intervals of track where the speed limit is below the desired holding speed, the speed must be held at the limit. If braking is necessary on an interval, the speed at which braking commences is determined in part by the holding speed for the interval. For vehicles with discrete control, speed-holding is approximated by alternate coast and power phases between two critical speeds, or between a lower critical speed and the speed limit.
In this article, we use the method of Foias and Temam to show that the strong solutions of the time-dependent magnetohydrodynamics equations in a periodic domain are analytic in time with values in a Gevrey class of functions. As immediate corollaries we find that the solutions are analytic in Hr-norms and that the solutions become smooth immediately after the initial time.
In this paper some existence results for third-order differential equations with nonlinear boundary value conditions are derived. Functional dependence in the data is allowed. In the proofs we use the method of upper and lower solutions, Schauder's fixed point theorem and results from Cabada and Heikkilä on third-order differential equations with linear and nonfunctional initial-boundary value conditions.
Some initial value problems are considered which arise in the treatment of a one-dimensional gas of point particles interacting with a “hard-core” potential.
Two basic types of initial conditions are considered. For the first, one particle is specified to be at the origin with a given velocity. The positions in phase space of the remaining background of particles are represented by continuous distribution functions. The second problem is a periodic analogue of the first.
Exact equations for the delta-function part of the single particle distribution functions are derived for the non-periodic case and approximate equations for the periodic case. These take the form of differential operator equations. The spectral and asymptotic properties of the operators associated with the two cases are examined and compared. The behaviour of the solutions is also considered.
The modelling of the combustion of dust suspensions leads to a nonlinear eigenvalue problem for a system of ordinary differential equations defined over an infinite interval. The equations contain a number of parameters. In this study, the shooting method is used to prove the existence of a solution. Linearisation is then used to provide an approximate solution, from which an estimate of the eigenvalue and its dependence on the given parameters can be obtained.
The evolution of small amplitude waves on an open two layer fluid is investigated. The spatially periodic surface and interface displacements are represented as Fourier series with time dependent coefficients, for which evolution equations with all significant quadratic interactions included, are derived. Solutions to these equations are found analytically for a small number of harmonics, and numerically for a larger number of harmonics. Two numerical solutions are given to illustrate the evolution properties.
The Sharpe-Lotka-McKendrick (or von Foerster) equations for an age-structured population, with a nonlinear term to represent overcrowding or competition for resources, are considered. The model is extended to include a growth term, allowing the population to be structured by size or weight rather than age, and a general solution is presented. Various examples are then considered, including the case of cell growth where cells divide at a given size.
This is an application of the characteristic identity satisfied by matrices whose elements are also elements of a semi-simple Lie algebra. Generalized eigenvectors are determined for matrices consisting of generators of GL(n), O(n) and Sp(n), and it is shown how to resolve the identity into idempotents constructed from such eigenvectors. By this means rather general functions of the matrices may be defined. It is also shown how to determine traces of such functions, in terms of the invariants of the Lie algebra.