To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The well-known Wilkinson expressions for the first derivatives of (ordinary) eigen-values and eigenvectors of simple matrices, in terms of the set of eigenvalues and eigenvectors, are redifferentiated and combined to obtain partial differential equations for the eigenvalues. Analogous expressions are obtained for the first derivatives of generalised eigenvalues and eigenvectors of simple pairs of matrices (A, B), defined by . Again, redifferentiation and combination yields slightly more complicated partial differential equations for the generalised eigenvalues. When the matrices depend on a few parameters θ1, θ2, …, the resulting differential equations for the eigenvalues, with those parameters as independent variables, can easily be derived. These parametric equations are explicit representations of analytic perturbation results of Kato, expressed by him as rather abstract complex matrix integrals. Connections with bounds for eigenvalues derived by Stewart and Sun can also be made. Two applications are exhibited, the first being to a broken symmetry problem, the second being to working out the second-order perturbations for a classical problem in the theory of waves in cold plasmas.
A fourth-order nonlinear evolution equation is derived for a wave propagating at the interface of two superposed fluids of infinite depths in the presence of a basic current shear. On the basis of this equation a stability analysis is made for a uniform wave train. Discussions are given for both an air-water interface and a Boussinesq approximation. Significant deviations are noticed from the results obtained from the third-order evolution equation, which is the nonlinear Schrödinger equation. In the Boussinesq approximation, it has been possible to compare the present results with the exact numerical analysis of Pullin and Grimshaw [12], and they are found to agree rather favourably.
A general theory is given for autonomous perturbations of non-linear autonomous second order oscillators. It is found using a multiple scales method. A central part of it requires computation of Fourier coefficients for representation of the underlying oscillations, and these coefficients are found as convergent expansions in a suitable parameter.
Iterative methods for solving systems of linear equations may be accelerated by coarse mesh rebalance techniques. The iterative technique, the Method of Implicit Non-stationary Iteration (MINI), is examined through a local-mode Fourier analysis and compared to relaxation techniques as a potential candidate for such acceleration. Results of a global-mode Fourier analysis for MINI, relaxation methods, and the conjugate gradient method are reported for two test problems.
The paper is concerned with formation of singularities in a density stratified fluid subject to a monochromatic point source of frequency σ. The frequency of the source is assumed to be such that the steady-oscillation equation is hyperbolic in the neighbourhood of the source and degenerates at a critical level. We obtain asymptotic formulae demonstrating how the solution diverges as t → ∞ on the characteristic surface emanating from the source. It is shown that, at points of the surface that belong to the critical level, the solution behaves as t⅔ exp {i(σt + π/2)} as t → ∞, whereas its large time behaviour at the other points of the surface is given by t½ exp {i(σt + π/2 ± π/4)}.
The paper is mainly concerned with the difference equation
where k and m are parameters, with k > 0. This equation arises from a method proposed for solving a cubic equation by iteration and represents a standardised form of the general problem. In using the above equation it is essential to know when the iteration process converges and this is discussed by means of the usual stability criterion. Critical values are obtained for the occurrence of solutions with period two and period three and the stability of these solutions is also examined. This was done by considering the changes as k increases, for a give value of m, which makes it effectively a one-parameter problem, and it turns out that the change with k can differ strongly from the usual behaviour for a one-parameter difference equation. For m = 2, for example it appears that the usual picture of stable 2-cycle solutions giving way to stable 4-cycle solutions is valid for smaller values of k but the situation is recersed for larger values of k where stable 4-cycle solutions precede stable 2-cycle solutions. Similar anomalies arise for the 3-cycle solutions.
The parameters describing the trapping kinetics of a linear model for diffusion, in solids involving a captured immobile phase of the diffusing entity, can be determined by measuring mean residence times for matter in the systems and evaluating the exponents for the final exponential decay rates of the diffusing entity from various shaped solids. The mean residence time for matter in a given region can be expressed in terms of a “torsion parameter” S which in the case of Dirichlet boundary conditions and cylindrical geometries, coincides with the torsional rigidity of the cylinder. The final decay rate is given by the first eigenvalue μ of a Helmholtz problem. Expressions and inequalities are derived for these parameters S and μ for general linear boundary conditions and for geometries relevant to diffusion experiments.
A linear programming model for optimally assigning diameters to a gas pipeline network is discussed. Computational results for a real life situation are presented, and certain properties that have to be satisfied by an optimal assignment are derived.
One of the most succesful algorithims for nonlinear least squares calculations is that associated with the names of Levenberg, Marquardt, and Morrison. This algorithim gives a method which depends nonlinearly on a parameter γ for computing the correction to the current point. In this paper an attempt is made to give a rule for choosing γ which (a) permits a satisfactory convergence theorem to be proved, and (b) is capable of satisfactory computer implementation. It is beleieved that the stated aims have been met with reasonable success. The convergence theorem is both simple and global in character, and a computer code is given which appears to be at least competitive with existing alternatives.
An integro-differential equation of Prandtl's type and a collocation method as well as a collocation-quadrature method for its approximate solution is studied in weighted spaces of continuous functions.
In this note we consider various theoretical aspects of the problem of least-squares approximation subject to constraints on the range of the approximating polynomial. The problem is treated from an optimization theory viewpoint. Rice's parameter space procedure is discussed.
If a finite segment of a spectrum is known, the determination of the finite object function in image space (or the full spectrum in frequency space) is a fundamental problem in image analysis. Gerchberg's method, which solves this problem, can be formulated as a fixed point iteration. This and other related algorithms are shown to be equivalent to a steepest descent method applied to the minimization of an appropriate functional for the Fourier Inversion Problem. Optimal steepest descent and conjugate gradient methods are derived. Numerical results from the application of these techniques are presented. The regularization of the problem and control of noise growth in the iteration are also discussed.
Two-dimensional gravity-capillary solitary waves propagating at the surface of a fluid of infinite depth are considered. The effects of gravity and of variable surface tension are included in the free-surface boundary condition. The numerical results extend the constant surface tension results of Vanden-Broeck and Dias to situations where the surface tension varies along the free surface.
A mathematical model is developed for the process of gas exchange in lung capillaries, taking into account the transport mechanisms of molecular diffusion and the facilitated diffusion of the species due to haemoglobin. We have assumed here equilibrium conditions which enable us to neglect advection effects. The nth order one-step kinetics of oxygen uptake by haemoglobin, proposed by Sharan and Singh [8], have been incorporated. The solution of this coupled nonlinear facilitated diffusion-reaction problem together with the physiologically-relevant boundary conditions is obtained in the closed form.
It is found that about 97.15% of total haemoglobin has combined with oxygen and 2.85% free pigment is left, which is present as carbaminohaemoglobin, met haemoglobin, carboxy haemoglobin etc. It is also shown that the percentage of free haemoglobin at a given PO2 and PCO2 is independent of total haemoglobin content present in the blood.
The well-known Hill's empirical relation is deduced from our solution. The results obtained from our model, based on physical formulation, are in good agreement with the documented data [6] and those computed from the Kelman [3] empirical relation.
We derive local transformations mapping radially symmetric nonlinear diffusion equations with power law or exponential diffusivities into themselves or into other equations of a similar form. Both discrete and continuous transformations are considered. For the cases in which a continuous transformation exists, many additional forms of group-invariant solution may be constructed; some of these solutions may be written in closed form. Related invariance properties of some multidimensional diffusion equations are also exploited.
Withdrawal flow through a point sink on the bottom of a fluid of finite depth is considered. The fluid is at rest at infinity, and a stagnation point is present at the free surface, directly above the point sink. Numerical solutions are computed by means of the method of fundamental solutions, and it is observed that flows of this type are apparently possible for Froude number less than about 1.5. Relationships to previous work are discussed.
The results obtained by A. J. Roberts and N. Ujević in a recent paper are generalised. A number of inequalities for functions whose derivatives are either functions of bounded variation or Lipschitzian functions or R-integrable functions are derived. Also, some error estimates for the derived formulae are obtained.