To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper deals with robust guaranteed cost control for a class of linear uncertain descriptor systems with state delays and jumping parameters. The transition of the jumping parameters in the systems is governed by a finite-state Markov process. Based on stability theory for stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost controllers is derived. In terms of the LMI (linear matrix inequality) approach, a linear state feedback controller is designed to stochastically stabilise the given system with a cost function constraint. A convex optimisation problem with LMI constraints is formulated to design the suboptimal guaranteed cost controller. A numerical example demonstrates the effect of the proposed design approach.
In Convex Structures and Economic Theory, Nikaideo analysed, inter alia, a circulating capital Leontief model where final demand could exhibit either proportional or non-proporaitonal growth. This paper extends his analsis to a fixed capital modee. Analogues of Nikaido's results are derived for the closed model and for the open model under blaanced grwoth. However, the results obtained here for the open model with unbalanced growth are weaker than Nikaido's.
We treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution
We extend an investigation into the bifurcation phenomena exhibited by an oxidation reaction in an adiabatic reactor to the case of a diabatic reactor. The primary bifurcation parameter is the fuel fraction; the inflow pressure and inflow temperature are the secondary bifurcation parameters. The inclusion of heat loss in the model does not change the static steady-state bifurcation diagram; the organising centre is a pitchfork singularity for both the adiabatic and diabatic reactors. However, unlike the adiabatic reactor, Hopf bifurcations may occur in the diabatic reactor. We construct the degenerate Hopf bifurcation curve by determining the double-Hopf locus. When the steady-state and degenerate Hopf bifurcation diagrams are combined it is found that there are 23 generic steady-state diagrams over the parameter region of interest. The implications of these structures from the perspective of flammability in the CSTR are discussed.
The error analysis of an algorithm for generating an approximation of degree n − 1 to an nth degree Bézier curve is presented. The algorithm is based on observations of the geometric properties of Bézier curves which allow the development of detailed error analysis. By combining subdivision with a degree reduction algorithm, a piecewise approximation can be generated, which is within some preset error tolerance of the original curve. The number of subdivisions required can be determined a priori and a piecewise approximation of degree m can be generated by iterating the scheme.
In a recent paper, Christie and Gopalsamy [2] used Melnikov's method to establish a sufficient condition for the existence of chaotic behaviour, in the sense of Smale, in a particular time-periodically perturbed planar autonomous system of ordinary differential equations. They then concluded with an application to the dynamics of a one-dimensional anharmonic oscillator. In this paper, the same system is considered and a condition for the existence of subharmonic orbits in the perturbed system is deduced, using the subharmonic Melnikov theory. Finally, an application is given to the dynamical behaviour of the one-dimensional anharmonic oscillator system.
A model is developed for the seif-organisation of zones of enzymatic activity along a liver capillary (hepatic sinusoid) lined with cells of two types, which contain different enzymes and compete for sites on the wall of the sinusoid. An effectively non-local interaction between the cells arises from local consumption of oxygen from blood flowing throug1 the sinusoid, which gives rise to gradients of oxygen concentration in turn influencing rates of division and of death of the two cell-types. The process is modelled by a pair of coupled non-linear integro-differential equations for the cell-densities as functions of time and position along the sinusoid. Existence of a unique, bounded, non-negative solution of the equations is proved, for prescribed initial values. The equations admit infinitely many stationary solutions, but it is shown that all except one are unstable, for any given set of the model parameters. The remaining solution is shown to be asymptotically stable against a large class of perturbations. For certain ranges of the model parameters, the asymptotically stable stationaxy solution has a zonal structure, with cells of one type located entirely upstream of cells of the other type, and with jump discontinuities in the cell densities at a certain distance along the sinusoid. Such sinusoidal zones can account for zones of enzymatic activity observed in the intact liver. Exceptional cases are found for singular choices of model parameters, such that stationary cell-densities cannot be asymptotically stable individually, but together form an asymptotically stable set. Certain mathematical questions are left open, notably the behaviour of large deviations from stationary solutions, and the global stability of such solutions. Possible generalisations of the model are described.
This paper investigates the effect of heat transfer on the motion of a spherical bubble in the vicinity of a rigid boundary. The effects of heat transfer between the bubble and the surrounding fluid, and the resulting loss of energy from the bubble, can be incorporated into the simple spherical bubble model with the addition of a single extra ordinary differential equation. The numerical results show that for a bubble close to an infiniterigid boundary there are significant differences in both the radius and Kelvin impulse of the bubble when the heat transfer effects are included.
A discrete spatial model of a multi-species environment is formulated, and the behaviour of the system is studied. The model is used to explore stability and resilience of biological systems and discuss how they are dependent on spatial scale chosen.
A finite transverse shock wave propagates through an unbounded medium consisting of two joined incompressible elastic half-spaces of different material properties, in the direction normal to the plane interface. A semi-inverse method is used to examine the reflection-transmission of this wave at the interface. It is found that, depending on the material properties, the reflected wave is either a simple wave or a shock; the transmitted wave is always a shock.
A variation-of-constants formula is obtained for a linear abstract evolution equation in Hilbert space with unbounded perturbation and free term. As an application, the state of the abstract controlled system with unbounded mixed controls is explicitly given.
Many gravity driven flows can be modelled as homogeneous layers of inviscid fluid with a hydrostatic pressure distribution. There are examples throughout oceanography, meteorology, and many engineering applications, yet there are areas which require further investigation. Analytical and numerical results for two-layer shallow-water formulations of time dependent gravity currents travelling in one spatial dimension are presented. Model equations for three physical limits are developed from the hydraulic equations, and numerical solutions are produced using a relaxation scheme for conservation laws developed recently by S. Jin and X. Zin [6]. Hyperbolicity of the model equations is examined in conjunction with the stability Froude number, and shock formation at the interface of the two layers is investigated using the theory of weakly nonlinear hyperbolic waves.
The general solution of the rth inhomogeneous linear difference equation is given in the form
The coefficients , i = 2, …, r, and b(n−r)(n) can be evaluated from n values , k = 0, …, n − 1, which santisfy an rth order homogenous linear difference equation. In the rth order homogeneous case and if n ≥ 2r, the method requires the evaluation of r determinants of successive orders n − 2r + 1, n − 2r + 2, …, n − r. If r ≤ n ≤ 2r − 1, only n − r determinants are required, with orders varying from 1 to n − r. In the second order ihnomogenous case, can be evaluated from a continued fraction amd a simple product.
An integral equation for the normal velocity of the interface between two immiscible fluids flowing in a two-dimensional porous medium or Hele-Shaw cell (one fluid displaces the other) is derived in terms of the physical parameters (including interfacial tension), a Green's function and the given interface. When the displacement is unstable, ‘fingering’ of the interface occurs. The Saffman-Taylor interface solutions for the steady advance of a single parallel-sided finger in the absence of interfacial tension are seen to satisfy the integral equation, and the error incurred in that equation by the corresponding Pitts approximating profile, when interfacial tension is included, is shown. In addition, the numerical solution of the integral equation is illustrated for a sinusoidal and a semicircular interface and, in each case, the amplitude behaviour inferred from the velocity distribution is consistent with conclusions based on the stability of an initially flat interface.
The Wiener-Hopf technique is applied to the quasi-linear infiltration problem of flow from a shallow half-plane pond. Fully-saturated conditions hold immediately under the pond, while on the surface away from the pond the linearised evaporative loss is assumed to be proportional to the local relative permeability.
Evaporation from the non-wetted region increases the water flow from the pond into the soil, thereby coupling to the effects from capillarity. Linearised evaporation introduces an additional length scale and additional logarithmic expressions to those derived previously. The total rate of volumetric flow into the soil from the pond per unit length of perimeter, in addition to the usual gravity flow, increases somewhat slowly as evaporation increases. The most extreme case considered in this paper yielded an additional flow rate 63% greater than that obtained in the absence of evaporation.
The interaction between evaporation and capillarity is enhanced in poorlydraining soils, where the reduced ability to transmit liquid water need not be compensated by a corresponding reduction in evaporative losses. However, in freelydraining soils the interaction between evaporation and capillarity is probably small.