To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In recent papers we have considered the numerical solution of the Hammerstein equation
by a method which first applies the standard collocation procedure to an equivalent equation for z(t):= g(t, y(t)), and then obtains an approximation to y by use of the equation
In this paper we approximate z by a polynomial zn of degree ≤ n − 1, with coefficients determined by collocation at the zeros of the nth degree Chebyshev polynomial of the first kind. We then define the approximation to y to be
and establish that, under suitable conditions, , uniformly in t.
In some recent investigations involving certain differential operators for a general family of Lagrange polynomials, Chan el al. encountered and proved a certain summation identity for the Lagrange polynomials in several variables. In the present paper, we derive some generalizations of this summation identity for the Chan-Chyan-Srivastava polynomials in several variables. We also discuss a number of interesting corollaries and consequences of our main results.
In this paper, we consider the problem of the steady-state fully developed magnetohydrodynamic (MHD) flow of a conducting fluid through a channel with arbitrary wall conductivity in the presence of a transverse external magnetic field with various inclined angles. The coupled governing equations for both axial velocity and induced magnetic field are firstly transformed into decoupled Poisson-type equations with coupled boundary conditions. Then the dual reciprocity boundary element method (DRBEM) [20] is used to solve the Poisson-type equations. As testing examples, flows in channels of three different crosssections, rectangular, circular and triangular, are calculated. It is shown that solutions obtained by the DRBEM with constant elements are accurate for Hartmann number up to 8 and for large conductivity parameters comparing to exact solutions and solutions by the finite element method (FEM).
The problem of finding critical initial data which separate conditions leading to blow-up from those which give solutions tending to the (stable) minimal solution is considered. New criteria for blow-up and global existence are found; these are equivalent to obtaining upper and lower bounds respectively for the set of critical initial data.
This paper describes a mathematical model for a broadband integrated services network offered traffic of many different types. Performance measures are introduced related to revenue generation and overall grade-of-service, providing criteria for the optimal management of resources. Simple asymptotic expressions are derived for quantities termed the “implied costs”, which measure the effect on performance of changes in parameters that are controllable by network management, or that are subject to variation. These implied costs may be used, both to implement optimal bandwidth allocation polices, and also to indicate which services may share a single facility without adversely affecting performance, and which might require a dedicated facility. Asymptotic results are also used to examine how to make efficient use of capacity that is shared between calls with fluctuating bit-rate requirements.
Numerical evidence is presented for the existence of unsteady periodic gravity waves of large height in deep water whose shape changes cyclically as they propagate. It is found that, for a given wavelength and maximum wave height, cyclic waves with a range of cyclic periods exist, with a steady wave of permanent shape being an extreme member of the range. The method of solution, using Fourier transforms of the nonlinear surface boundary conditions, determines the irrotational velocity field in the water and the water surface displacement as functions of space and time, from which properties of the waves are demonstrated. In particular, it is shown that cyclic waves are closer to the point of wave breaking than are steady permanent waves of the same wave height and wavelength.
In this paper we present an Extended Linear-Quadratic Programming method for the minimax problem. We show that the Extended Linear-Quadratic Programming method for the minimax problem is equivalent to the Josephy-Newton method for generalized equation, and establish the local convergence result. Furthermore, we obtain the global convergence result for the minimax problem by means of the equivalence relation between the generalized equation and the normal equation.
Segal's unitarizing complex structure J is shown, in the Fermi-Dirac case, to be the orthogonal component in the polar decomposition of the real skew adjoint generator of classical dynamics. It is proven that in the Bose-Einstein case, the classical symplectic dynamics cannot be unitarized unless the generator is similar to a real skew adjoint operator.
With the classical Hamiltonian strictly positive, J is the pseudo-orthogonal component in the polar decomposition of the generator, using spectral theory in Krein space with indefinite metric. Thus, J can be expressed simply in terms of the projection E(0) onto the subspace of classical solutions with negative frequency. This complements the physicists' experience that conceptual difficulties arise when dynamically invariant separation of positive and negative frequency solutions is impossible.
This paper presents a short survey of convergence results and properties of the Lebesgue function λm,n(x) for(0, 1, …, m)Hermite-Fejér interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n → ∞ of the Lebesgue constant Λm,n = max{λm,n(x): −1 ≤ x ≤ 1} for even m is then studied, and new results are obtained for the asymptotic expansion of Λm,n. Finally, graphical evidence is provided of an interesting and unexpected pattern in the distribution of the local maximum values of λm,n(x) if m ≥ 2 is even.
A Fredholm operator exists which maps the solutions of a system of linear partial differential equations of the form ∂u/∂t = DLu + Au coupled by a matrix A onto those solutions of a similar system coupled by a matrix B which have the same initial values. The kernels of this operator satisfy a hyperbolic system of equations. Since these equations are independent of the linear partial differential operator L, the same operator serves as a mapping for a large class of equations. If B is chosen diagonal, the solutions of a coupled system with matrix A may be obtained from the uncoupled system with matrix B.
Consider the prototype ill-posed problem of a first kind integral equation ℛ with discrete noisy data di, = f(xi) + εi, i = 1, …, n. Let u0 be the true solution and unα a regularised solution with regularisation parameter α. Under certain assumptions, it is known that if α → 0 but not too quickly as n → ∞, then unα converges to u0. We examine the dependence of the optimal sequence of α and resulting optimal convergence rate on the smoothness of f or u0, the kernel K, the order of regularisation m and the error norm used. Some important implications are made, including the fact that m must be sufficiently high relative to the smoothness of u0 in order to ensure optimal convergence. An optimal filtering criterion is used to determine the order where is the maximum smoothness of u0. Two practical methods for estimating the optimal α, the unbiased risk estimate and generalised cross validation, are also discussed.
The purpose of this work is to begin the development of a theory of generating functions that will not only include the generating functions which are partly bilateral and partly unilateral but also provide a set of expansions, by taking successive partial derivatives with respect to one of the variables of the generating relations. Our starting point is a result of Exton [4] on associated Laguerre polynomials whose application gives certain generating functions of the polynomials of Jacobi and Appell, and functions of n variables of Lauricella.
Let L, T, S, and R be closed densely defined linear operators from a Hubert space X into X where L can be factored as L = TS + R. The equation Lu = f is equivalent to the linear system Tv + Ru = f and Su = v. If Lu = f is a two-point boundary value problem, numerical solution of the split system admits cruder approximations than the unsplit equations. This paper develops the theory of such splittings together with the theory of the Methods of Least Squares and of Collocation for the split system. Error estimates in both L2 and L∞ norms are obtained for both methods.
In this paper, we present a method for the construction of a robust observer-based H∞ controller for an uncertain time-delay system. Cases of both single and multiple delays are considered. The parameter uncertainties are time-varying and norm-bounded. Observer and controller are designed to be such that the uncertain system is stable and a disturbance attenuation is guaranteed, regardless of the uncertainties. It has been shown that the above problem can be solved in terms of two linear matrix inequalities (LMIs). Finally, an illustrative example is given to show the effectiveness of the proposed techniques.
We propose the second-order time discretization scheme with the finite-element approximation for the partial integro-differential equations with a weakly singular kernel. The space discretization is based on the finite element method and the time discretization is based on the Crank-Nicolson scheme with a graded mesh. We show the stability of the scheme and obtain the second-order convergence result for the fully discretized scheme.
We consider the boundary-value problems corresponding to the scattering of a time-harmonic acoustic plane wave by a multi-layered obstacle with a sound-soft, hard or penetrable core. Firstly, we construct in closed forms the normalized scattering amplitudes and prove the classical reciprocity and scattering theorems for these problems. These results are then used to study the spectrum of the scattering amplitude operator. The scattering cross-section is expressed in terms of the forward value of the corresponding normalized scattering amplitude. Finally, we develop a more general theory for scattering relations.