To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the existence of solutions of Maxwell's equations for a conducting medium whose constitutive parameters are piecewise constant on R3, and then examine the convergence of these solutions in the quasi-static limit in which displacement currents are neglected. Secondly, we examine the regularity of the limiting solution and the sense in which the classical boundary conditions hold, namely, continuity of the tangential electric field and the normal current density.
Solutions of the stiff system of linear differential equations
are obtained in a form yielding tight estimates of their properties, and conditions are obtained under which the operator norm of the map from r to the solution x does not become exponentially large for small values of ε. When these conditions are satisfied, the solutions are shown to be close to those of Ax + r = 0, save at any singular points of A, and in boundary layers. The behaviour of solutions near admissible singular points is also obtained.
The results are used to characterize those boundary-value problems for the above system in which the solution defines maps from the data that are of “moderate” operator norm. This leads to a constructive existence theory for a limited class of boundary-value problems for the nonlinear system
It is suggested that the treatment of more general classes of boundary-value problems may be simplified using these results. By the use of simple examples, the problems involving large operator norms are shown to be related to the stability properties of the possible branches of the outer solutions close to those of
In this paper we define two types of proper efficient solutions in the Borwein sense for vector optimisation problems and we compare them with the notions of local Borwein, Ishizuka-Tuan, Kuhn-Tucker and strict efficiency. A sufficient condition for a proper solution is also proved.
In many physical problems, the system tends quickly to a particular structure, which then evolves relatively slowly in space and time. Various methods exist to derive equations describing the slow evolution of the particular structure; for example, the method of multiple scales. However, the resulting equations are typically valid only for a limited range of the parameters. In order to extend the range of validity and to improve the accuracy, correction terms must be found for the equations. Here we describe a procedure, inspired by centre-manifold theory, which provides a systematic approach to calculating a sequence of successively more accurate approximations to the evolution of the principal structure in space and time.
The formal procedure described here raises a number of questions for future research. For example: what sort of error bounds can be obtained, do the approximations converge or are they strictly asymptotic, and what sort of boundary conditions are appropriate in a given problem?
Similarity solutions of the steady-state equation of transport for the distribution function F0 of cosmic rays in the interplanetary region are obtained by theuse of transformation groups. The solutions are derived in detail for a spherically-symmetric model of the interplanetary region with an effective radial diffusion coefficient κ = κ0(p)rb with r the heliocentric radial distance. p the particle momentum, κ0(p) an arbitary function of p, and the solar wind velocity is radial and of constant speed V. Solutions for which the similarity variable η is a function of r only are also derived; these are of particular impoartance when the F0 is specified on a boundary of given radius. Non spherically-symmetric solutions can also be obtained by group methods and examples of such solutions are listed, without derivation, for the equation of transport incorporating the effects of anisotropic diffusion (diffusion coefficient κ1 in the radial direction and κ2 normal to it). The solutions are the most extensive steady-state analytic solutions yet obtained, and contain previous analytic solutions as special cases.
Using a semi-inverse method proposed by Wright the reflection of a finite elastic plane shock wave at a plane boundary of a special elastic incompressible material is examined. Three types of boundary conditions are considered. In the case of frictionless-rigid boundary the reflected wave is a single simple wave. For clamped boundary the solution indicates a possibility of irregular reflection as well. There is no reflection solution in the case of a free boundary.
An investigation is made of the transition from periodic solutions through nearly-periodic solutions to chaotic solutions of the differential equation governing forced coplanar motion of a weakly damped pendulum. The pendulum is driven by horizontal, periodic forcing of the pivot with maximum acceleration Є g and dimensionless frequency ω As the forcing frequency ω is decreased gradually at a sufficiently large forcing amplitude Є, it has been shown previously that the pendulum progresses from symmetric oscillations of period T (= 2 π/ω) into a symmetry-breaking, period-doubling sequence of stable, periodic oscillations. There are two related forms of asymmetric, stable oscillations in the sequence, dependent on the initial conditions. When the frequency is decreased immediately beyond the sequence, the oscillations become unstable but remain in the neighbourhood in (θ,) phase space of one or other of the two forms of periodic oscillations, where θ(t) is the pendulum angle with the downward vertical. As the frequency is decreased further, the oscillations move intermittently between the neighbourhoods in (θ,) phase space of each of the two forms of periodic oscillations, in paired nearly-periodic oscillations. Further decrease of the forcing frequency leads to time intervals in which the motion is strongly unstable, with the pendulum passing intermittently over the pivot, interspersed with time intervals when the motion is nearly-periodic and only weakly unstable. The strongly-unstable intervals dominate in fully chaotic oscillations. Windows of independent, stable, periodic oscillations occur throughout the frequency range investigated. It is shown in an appendix how the Floquet method may be interpreted to describe the linear stability of the periodic and nearly-periodic solutions, and the windows of periodic oscillations in the investigated frequency range are listed in a second appendix.
When material is undergoing an exothermic chemical reaction which is sustained by the diffusion of a reactant, the steady-state regime is governed by a coupled pair of nonlinear elliptic partial differential equations with linear boundary conditions. In this paper we consider questions of existence of solutions to these equations. It is shown that, with the exception of the special case in which the mass-transfer is uninhibited on the boundary, a solution always exists, whereas in this special case a solution exists only for sufficiently low values of the exothermicity. Bounds are established for the solutions and the occurrence of minimal and maximal solutions is shown for some cases. Finally the behaviour of the solution set with respect to one of the parameters is studied.
The explicit inverse and determinant of a class of matrices is given. The class is the Hadamard product of two already known classes. Its elements are defined by 3n − 1 parameters, analytical expressions of which compose the Hessenberg form inverse. These expressions enable a recursive formula to be obtained, which gives the inverse in O(n2) multiplications/divisions and O(n) additions/subtractions.
A simple rigorous approach is given to generalized functions, suitable for applications. Here, a generalized function is defined as a genuine function on a superset of the real line, so that multiplication is unrestricted and associative, and various manipulations retain their classical meanings. The superset is simply constructed, and does not require Robinson's nonstandard real line. The generalized functions go beyond the Schwartz distributions, enabling products and square roots of delta functions to be discussed.
In this paper we have proved that the generalized incomplete gamma functions and their extensions are mutually related through integral and differential representations.
In this study, we are concerned with a boundary value problem (BVP) for nonlinear difference equations on the set of all integers Z. under the assumption that the left-hand side is a second-order linear difference expression which belongs to the so-called Weyl-Hamburger limit-circle case. The BVP is considered in the Hilbert space l2 and includes boundary conditions at infinity. Existence and uniqueness results for solution of the considered BVP are established.
Reacting systems with Arrhenius chemistry can exhibit multiple steady states for γ > 4(1 + β)/β where γ is activation energy and β is the heat of reaction. We give a detailed analysis of the extremely rapid jump which takes place as catalyst activity slowly decays through criticality. Previous analyses are asymptotic in the limit γ → ∞; here we relax the large γ assumption and only require that passage through criticality is slow.