To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Asymptotic and numerical analysis provides essential insight into the behaviour of Fourier integral solutions for the deflexion of an infinite continuously-supported flexible plate due to moving load. Thus we can define in detail how the plate deflexion depends upon the load speed, including (a) the wave patterns generated by a load moving steadily at various supercritical speeds; and (b) the time-dependent behaviour of the deflexion due to an impulsively-started load, where the two-dimensional response tends to a steady state except at the critical speed, when it grows continuously with time (in the absence of dissipation).
A local existence and uniqueness result is proved for the three-dimensional Euler-Poisson system without a pressure term which arises in plasma physics.
Derivative-type ascent formulas are deduced for the kernels of certain half-space Dirichlet problems. These have the character of differentiation formulas for the Bessel functions but involve modifying variables after completing the differentiations. The Laplace equation and the equation of generalized axially-symmetric potential theory (GASPT) are considered in these. The methods employed also permit treating abstract versions of Dirichlet problems.
Recently, considerable interest has been shown in the connection between smoothing splines and a particular class of stochastic processes. Here the connection with an equivalent class of least squares problems is used to develop algorithms, and properties of the solution are examined. We give an estimate of the condition number of the solution process and compare this with an estimate for the condition number of the Reinsch algorithm in its conventional implementation.
Gamma-Weibull variates with five parameters are defined by multiplication of gamma and Weibull densities and renormalising. Sums of independent such variates are distributed as combinations of products of gammas and confluent hypergeometric functions and are explicitly determined. Sums of independent non-identical Weibulls arise as a special case. These variates can be used to model moderately extreme scenarios between gamma and Weibull that occur in many natural applications. All results are exact.
In this paper, we investigate minimal (weak) approximate Hessians, and completely answer the open questions raised by V. Jeyakumar and X. Q. Yang. As applications, we first give a generalised Taylor's expansion in terms of a minimal weak approximate Hessian. Then we characterise the convexity of a continuously Gâteaux differentiable function. Finally some necessary and sufficient optimality conditions are presented.
In a recent paper Weber et al. [9] examined the propagation of combustion waves in a semi-infinite gaseous or solid medium. Whereas their main concern was the behaviour of waves once they had been initiated, we concentrate here on the initiation of such waves in a solid medium and have not examined in detail the steadiness or otherwise of the waves subsequent to their formation. The investigation includes calculations for finite systems. The results for a slab, cylinder and sphere are compared.
Critical conditions for initiation of ignition by a power source are established. For a slab the energy input is spread uniformly over one boundary surface. In the case of cylindrical or spherical symmetry it originates from a cylindrical core or from a small, central sphere, respectively. The size of source and reactant body is important in the last two cases. With the exception of the initial temperature distribution, the equations investigated are similar in form to those of Weber et al. [5,9] and, as a prelude to the present study, with very simple adaptation, it has been possible to reproduce the results of the earlier work. We then go on to report the result of calculations for the initiation of ignition under different geometries with various initial and boundary conditions.
In this paper we have evaluated an infinite integral of product of the Lommel and Bessel functions and powers. Some special cases of the result are discussed.
In recent papers we have considered the numerical solution of the Hammerstein equation
by a method which first applies the standard collocation procedure to an equivalent equation for z(t):= g(t, y(t)), and then obtains an approximation to y by use of the equation
In this paper we approximate z by a polynomial zn of degree ≤ n − 1, with coefficients determined by collocation at the zeros of the nth degree Chebyshev polynomial of the first kind. We then define the approximation to y to be
and establish that, under suitable conditions, , uniformly in t.
In some recent investigations involving certain differential operators for a general family of Lagrange polynomials, Chan el al. encountered and proved a certain summation identity for the Lagrange polynomials in several variables. In the present paper, we derive some generalizations of this summation identity for the Chan-Chyan-Srivastava polynomials in several variables. We also discuss a number of interesting corollaries and consequences of our main results.
In this paper, we consider the problem of the steady-state fully developed magnetohydrodynamic (MHD) flow of a conducting fluid through a channel with arbitrary wall conductivity in the presence of a transverse external magnetic field with various inclined angles. The coupled governing equations for both axial velocity and induced magnetic field are firstly transformed into decoupled Poisson-type equations with coupled boundary conditions. Then the dual reciprocity boundary element method (DRBEM) [20] is used to solve the Poisson-type equations. As testing examples, flows in channels of three different crosssections, rectangular, circular and triangular, are calculated. It is shown that solutions obtained by the DRBEM with constant elements are accurate for Hartmann number up to 8 and for large conductivity parameters comparing to exact solutions and solutions by the finite element method (FEM).
The problem of finding critical initial data which separate conditions leading to blow-up from those which give solutions tending to the (stable) minimal solution is considered. New criteria for blow-up and global existence are found; these are equivalent to obtaining upper and lower bounds respectively for the set of critical initial data.
This paper describes a mathematical model for a broadband integrated services network offered traffic of many different types. Performance measures are introduced related to revenue generation and overall grade-of-service, providing criteria for the optimal management of resources. Simple asymptotic expressions are derived for quantities termed the “implied costs”, which measure the effect on performance of changes in parameters that are controllable by network management, or that are subject to variation. These implied costs may be used, both to implement optimal bandwidth allocation polices, and also to indicate which services may share a single facility without adversely affecting performance, and which might require a dedicated facility. Asymptotic results are also used to examine how to make efficient use of capacity that is shared between calls with fluctuating bit-rate requirements.
Numerical evidence is presented for the existence of unsteady periodic gravity waves of large height in deep water whose shape changes cyclically as they propagate. It is found that, for a given wavelength and maximum wave height, cyclic waves with a range of cyclic periods exist, with a steady wave of permanent shape being an extreme member of the range. The method of solution, using Fourier transforms of the nonlinear surface boundary conditions, determines the irrotational velocity field in the water and the water surface displacement as functions of space and time, from which properties of the waves are demonstrated. In particular, it is shown that cyclic waves are closer to the point of wave breaking than are steady permanent waves of the same wave height and wavelength.
In this paper we present an Extended Linear-Quadratic Programming method for the minimax problem. We show that the Extended Linear-Quadratic Programming method for the minimax problem is equivalent to the Josephy-Newton method for generalized equation, and establish the local convergence result. Furthermore, we obtain the global convergence result for the minimax problem by means of the equivalence relation between the generalized equation and the normal equation.
Segal's unitarizing complex structure J is shown, in the Fermi-Dirac case, to be the orthogonal component in the polar decomposition of the real skew adjoint generator of classical dynamics. It is proven that in the Bose-Einstein case, the classical symplectic dynamics cannot be unitarized unless the generator is similar to a real skew adjoint operator.
With the classical Hamiltonian strictly positive, J is the pseudo-orthogonal component in the polar decomposition of the generator, using spectral theory in Krein space with indefinite metric. Thus, J can be expressed simply in terms of the projection E(0) onto the subspace of classical solutions with negative frequency. This complements the physicists' experience that conceptual difficulties arise when dynamically invariant separation of positive and negative frequency solutions is impossible.