To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A detailed analytical and numerical study is made of the deformation of highly elastic circular cylinders and tubes produced by steady rotation about the axis of symmetry. Explicit results are obtained through the use of Ogden's strain–energy function for incompressible isotropic elastic materials which, as well as being analytically convenient, is capable of reproducing accurately the observed isothermal behaviour of vulcanized rubber over a wide range of deformations. The three problems of steady rotation considered here concern (i) a tube shrink-fitted to a rigid spindle, (ii)an unconstrained tube, and (iii) a solid cylinder. In each case a set of restictions on the material constans appearing in the strain–energy function is stated which ensures that a tubular of cylindrical shape-preserving deformation exists for all angular spees and that, for problems (i) and (iii), there is no other solution. In connection with problems (ii) and (iii) values of the material constans are also given which correspond to the bifuraction or non-existence of soultions. Enegry consideration are used to determine the local stability of the various solutions obtained.
Conservation laws for partial differential equations can be characterised by an operator, the characteristic and a condition involving the adjoint of the Fréchet derivatives of this operator and the operator defining the partial differential equation. This approach was developed by Anco and Bluman and we exploit it to derive conditions for second-order parabolic partial differential equations to admit conservation laws. We show that such partial differential equations admit conservation laws only if the time derivative appears in one of two ways. The adjoint condition, however, is a biconditional, and we use this to prove necessary and sufficient conditions for a certain class of partial differential equations to admit a conservation law.
In this paper we study the effect of forced and free convection heat transfer on flow in an axisymmctric tube whose radius varies slowly in the axial direction. Asymptotic series expansions in terms of a small parameter ∈, which is a measure of the radius variation, are obtained for the velocity components, pressure and temperature on the assumption that the Reynolds number (R) is of order one. The effect of the free convection parameter or Grashof number (G) on the axial velocity, temperature distribution, shear stress and heat flux at the wall are discussed quantitatively for a locally constricted tube.
This paper presents a method for the inverse fractional matching problem. We show that the dual of this inverse problem can be transformed into the circulation flow problem on a directed bipartite graph which can be solved easily. We also give an algorithm to obtain the primal optimum solution of the inverse problem from its dual optimum solution by solving a shortest path problem. Furthermore, we generalize this method to solve the inverse symmetric transportation problem.
Recursive parametric series solutions are developed for polynomial ODE systems, based on expanding the system components in series of a form studied by Weiss. Individual terms involve first-order driven linear ODE systems with variable coefficients. We consider Lotka-Volterra systems as an example.
This paper deals with robust guaranteed cost control for a class of linear uncertain descriptor systems with state delays and jumping parameters. The transition of the jumping parameters in the systems is governed by a finite-state Markov process. Based on stability theory for stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost controllers is derived. In terms of the LMI (linear matrix inequality) approach, a linear state feedback controller is designed to stochastically stabilise the given system with a cost function constraint. A convex optimisation problem with LMI constraints is formulated to design the suboptimal guaranteed cost controller. A numerical example demonstrates the effect of the proposed design approach.
In Convex Structures and Economic Theory, Nikaideo analysed, inter alia, a circulating capital Leontief model where final demand could exhibit either proportional or non-proporaitonal growth. This paper extends his analsis to a fixed capital modee. Analogues of Nikaido's results are derived for the closed model and for the open model under blaanced grwoth. However, the results obtained here for the open model with unbalanced growth are weaker than Nikaido's.
We treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution
We extend an investigation into the bifurcation phenomena exhibited by an oxidation reaction in an adiabatic reactor to the case of a diabatic reactor. The primary bifurcation parameter is the fuel fraction; the inflow pressure and inflow temperature are the secondary bifurcation parameters. The inclusion of heat loss in the model does not change the static steady-state bifurcation diagram; the organising centre is a pitchfork singularity for both the adiabatic and diabatic reactors. However, unlike the adiabatic reactor, Hopf bifurcations may occur in the diabatic reactor. We construct the degenerate Hopf bifurcation curve by determining the double-Hopf locus. When the steady-state and degenerate Hopf bifurcation diagrams are combined it is found that there are 23 generic steady-state diagrams over the parameter region of interest. The implications of these structures from the perspective of flammability in the CSTR are discussed.
The error analysis of an algorithm for generating an approximation of degree n − 1 to an nth degree Bézier curve is presented. The algorithm is based on observations of the geometric properties of Bézier curves which allow the development of detailed error analysis. By combining subdivision with a degree reduction algorithm, a piecewise approximation can be generated, which is within some preset error tolerance of the original curve. The number of subdivisions required can be determined a priori and a piecewise approximation of degree m can be generated by iterating the scheme.
In a recent paper, Christie and Gopalsamy [2] used Melnikov's method to establish a sufficient condition for the existence of chaotic behaviour, in the sense of Smale, in a particular time-periodically perturbed planar autonomous system of ordinary differential equations. They then concluded with an application to the dynamics of a one-dimensional anharmonic oscillator. In this paper, the same system is considered and a condition for the existence of subharmonic orbits in the perturbed system is deduced, using the subharmonic Melnikov theory. Finally, an application is given to the dynamical behaviour of the one-dimensional anharmonic oscillator system.
A model is developed for the seif-organisation of zones of enzymatic activity along a liver capillary (hepatic sinusoid) lined with cells of two types, which contain different enzymes and compete for sites on the wall of the sinusoid. An effectively non-local interaction between the cells arises from local consumption of oxygen from blood flowing throug1 the sinusoid, which gives rise to gradients of oxygen concentration in turn influencing rates of division and of death of the two cell-types. The process is modelled by a pair of coupled non-linear integro-differential equations for the cell-densities as functions of time and position along the sinusoid. Existence of a unique, bounded, non-negative solution of the equations is proved, for prescribed initial values. The equations admit infinitely many stationary solutions, but it is shown that all except one are unstable, for any given set of the model parameters. The remaining solution is shown to be asymptotically stable against a large class of perturbations. For certain ranges of the model parameters, the asymptotically stable stationaxy solution has a zonal structure, with cells of one type located entirely upstream of cells of the other type, and with jump discontinuities in the cell densities at a certain distance along the sinusoid. Such sinusoidal zones can account for zones of enzymatic activity observed in the intact liver. Exceptional cases are found for singular choices of model parameters, such that stationary cell-densities cannot be asymptotically stable individually, but together form an asymptotically stable set. Certain mathematical questions are left open, notably the behaviour of large deviations from stationary solutions, and the global stability of such solutions. Possible generalisations of the model are described.