To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show the stability results and Galerkin-type approximations of solutions for a family of Dirichlet problems with nonlinearity satisfying some local growth conditions. 2000 Mathematics subject classification: primary 35A15; secondary 35B35, 65N30. Keywords and phrases: p(x)-Laplacian, duality, variational method, stability of solutions, Galerkin-type approximations.
In the present paper, we make use of the method of asymptotic integration to get estimates on those regions in the complex plane where singularities and critical points of solutions of the Matrix-Riccati differential equation with polynomial co-efficients may appear. The result is that most of these points lie around a finite number of permanent critical directions. These permanent directions are defined by the coefficients of the differential equation. The number of singularities outside certain domains around the permanent critical directions, in a circle of radius r, is of growth O(log r). Applications of the results to periodic solutions and to the determination of critical points are given.
Slow catalyst poisoning can result in the sudden failure of a chemical reactor operating isothermally with substrate-inhibited kinetics. At failure, a satisfactory steady state is exchanged for one of low conversion. The method of matched asymptotic expansions is used to give a detailed description of the exchange process in the phase plane. The structure of the jump is ascertained by separate asymptotic expansions across two adjoining transition regions in which the independent variables contain unknown shifts.
A method for constructing a pair of biorthogonal interpolatory multiscaling functions is given and an explicit formula for constructing the corresponding biorthogonal multiwavelets is obtained. A multiwavelet sampling theorem is also established. In addition, we improve the stability of the biorthogonal interpolatory multiwavelet frame by the linear combination of a pair of biorthogonal interpolatory multiwavelets. Finally, we give an example illustrating how to use our method to construct biorthogonal interpolatory multiscaling functions and corresponding multiwavelets.
The resolution of the identity formula for a localisation operator with two admissible wavelets on a separable and complex Hilbert space is given and the traces of these operators are computed.
The eddy currents induced in a thin sheet of variable conductivity by a sinusoidally varying primary magnetic field are investigated in the low frequency limit when the depth of penetration of the primary field is much greater than the thickness of the sheet. The problem is formulated in terms of a set of integro-differential equations. The method of solution is applicable to bodies with arbitrary planar shape and the result is particularly useful in inverse problems involving bodies with conductivity inhomogeneities.
We describe a computer proof of the 17-point version of a conjecture originally made by Klein-Szekeres in 1932 (now commonly known as the “Happy End Problem”) that a planar configuration of 17 points, no 3 points collinear, always contains a convex 6-subset. The proof makes use of a combinatorial model of planar configurations, expressed in terms of signature functions satisfying certain simple necessary conditions. The proof is more general than the original conjecture as the signature functions examined represent a larger set of configurations than those which are realisable. Three independent implementations of the computer proof have been developed, establishing that the result is readily reproducible.
The monotone iterative technique is applied to a system of ordinary differential equations with a singular matrix. The existence of extremal solutions is proved.
This paper deals with the question of the existence of a solution to the stationary-point problem corresponding to a given nonlinear nondifferentiable program. An existence theorem for the stationary-point problem is presented under some convexity and regularity conditions on the functions involved, which also guarantee an optimal solution to the nonlinear program.
In this paper we describe an elementary method for calculating the matrix exponential on an arbitrary time scale. An example is also given to illustrate the result.
For the heat equation in two space dimensions we consider semidiscrete and totally discrete variants of the lumped mass modification of the standard Galerkin method, using piecewise linear approximating functions, and demonstrate error estimates of optimal order in L2 and of almost optimal order in L∞.
The two-dimensional Helmholtz equation is studied for an infinite region with two semi-infinite plates extending to infinity in opposite directions and a finite duct in the overlapping region. The solution technique leads to coupled Wiener-Hopf equations, and subsequently to an infinite set of simultaneous linear equations. As an example, an asymptotic expansion is calculated and graphed for the case when the duct length divided by duct width is large enough to ensure damping of all but the zero mode wave in the duct.
When studying deep convection in a compressible medium the effects of viscous dissipation can become important and must be taken into account in any realistic model. But even in shallow convection, for which the Boussinesq approximation is valid, the viscous dissipation effects will become important at high Rayleigh numbers. These effects are estimated with the help of asymptotic methods and the results are compared with those obtained by numerical integration.
In this paper a class of optimal control problems with distributed parameters is considered. The governing equations are nonlinear first order partial differential equations that arise in the study of heterogeneous reactors and control of chemical processes. The main focus of the present paper is the mathematical theory underlying the algorithm. A conditional gradient method is used to devise an algorithm for solving such optimal control problems. A formula for the Fréchet derivative of the objective function is obtained, and its properties are studied. A necessary condition for optimality in terms of the Fréchet derivative is presented, and then it is shown that any accumulation point of the sequence of admissible controls generated by the algorithm satisfies this necessary condition for optimality.
Iterative methods for solving a square system of nonlinear equations g(x) = 0 often require that the sum of squares residual γ (x) ≡ ½∥g(x)∥2 be reduced at each step. Since the gradient of γ depends on the Jacobian ∇g, this stabilization strategy is not easily implemented if only approximations Bk to ∇g are available. Therefore most quasi-Newton algorithms either include special updating steps or reset Bk to a divided difference estimate of ∇g whenever no satisfactory progress is made. Here the need for such back-up devices is avoided by a derivative-free line search in the range of g. Assuming that the Bk are generated from an rbitrary B0 by fixed scale updates, we establish superlinear convergence from within any compact level set of γ on which g has a differentiable inverse function g−1.
Conditions are given for a Ck map T to be a Newton map, that is, the map associated with a differentiable real-valued function via Newton's method. For finitely differentiable maps and functions, these conditions are only necessary, but in the smooth case, that is, for k = ∞, they are also sufficient. The characterisation rests upon the structure of the fixed point set of T and the value of the derivative T′ there, and it is best possible as is demonstrated through examples.