To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A recent paper by Leipnik and Pearce introduced the gamma Weibull distribution. One of the main properties given is its characteristic function, which is expressed as an infinite sum. In this note, we provide a simpler representation in terms of the well-known hypergeometric functions in some special cases. We also derive expressions for moments of the distribution.
The effects of iron on the uniformity of the field produced by a current-carrying axisymmetric conductor are considered. Using a perturbation analysis a simple analytic expression is obtained which describes the field close to the axis of symmetry. A Fourier series approach is also used to provide an analytical solution to the problem and the accuracy of the perturbation method is estimated by comparing results.
A theorem is derived for the hydrodynanuc image of an axially symmetric slow viscous (Stokes) flow in a sphere which is impermeable and free of shear stress. A second theorem establishes a sense in which such a flow past an arbitrary rigid surface or shear-free sphere becomes, on inversion in an arbitrary sphere with its centre on the axis of symmetry, a flow past the rigid or shear-free inverse of that surface or sphere.
The theorems are used to simplify the proofs of a number of known results for images of point singularities in plane and spherical rigid and free boundaries, and for a pair of bubbles rising steadily in line in a viscous fluid. They also give for the first time accurate numerical solutions for the velocities of each of a larger number of spherical bubbles rising quasi-steadily in line. These enable one to assess the accuracy of simple approximations to those velocities.
Polynomial identities satisfied by the generators of the Lie groups O(n) and U(n) are rederived. Using these identities the reduced matrix elements of the Lie groups U(n) and O(n) are evaluated as rational functions of the IR labels occurring in the canonical chains
This method does not require an explicit realization of the Lie algebras and their representations using bosons. Finally, trace formulae encountered previously by several authors for finite dimensional irreducible representations are shown to hold on arbitrary representations admitting an infinitesimal character.
We present analytical methods to investigate the Cauchy problem for the complex Ginzburg-Landau equation u1 = (v + iα)Δu − (κ + iβ) |u|2qu + γu in 2 spatial dimensions (here all parameters are real). We first obtain the local existence for v > 0, κ ≥ 0. Global existence is established in the critical case q = 1. In addition, we prove the global existence when .
Tensor identities for finite dimensional representations of arbitrary semi-simple Lie algebras are derived and are applied to the construction of left-projection operators which project out the shift components of tensor operators from the left. The corresponding adjoint identities are also derived and are used for the construction of right-projection operators. It is also shown that, on a finite dimensional irreducible representation, these identities may be considerably reduced. Commutation relations between the shift tensors of a tensor operator are also computed in terms of the roots appearing in the tensor identities.
We study a nonlinear oscillatory system with two degrees of freedom. By using the continuation theorem of coincidence degree theory, some sufficient conditions are obtained to establish the existence of periodic solutions of the system.
In this paper, finite phase semi-Markov processes are introduced. By introducing variables and a simple transformation, every finite phase semi-Markov process can be transformed to a finite Markov chain which is called its associated Markov chain. A consequence of this is that every phase semi-Markovian switching system may be equivalently expressed as its associated Markovian switching system. Existing results for Markovian switching systems may then be applied to analyze phase semi-Markovian switching systems. In the following, we obtain asymptotic stability for the distribution of nonlinear stochastic systems with semi-Markovian switching. The results can also be extended to general semi-Markovian switching systems. Finally, an example is given to illustrate the feasibility and effectiveness of the theoretical results obtained.
In this paper, the design of output feedback controllers for linear systems under sampled measurements is investigated. The performance we use is the worst-case gain from disturbances to the controlled output, which comprises both a continuous-time and a discretetime signal to be controlled. Control problems in both the finite and infinite horizonare addressed. Necessary and sufficient conditions for the existence of a suitable sampled-data output feedback controller are given in terms of two Riccati differential equations with finite discrete jumps. A numerical example is given to show the potential of the proposed technique.
This paper addresses the effect of general Lewis number and heat losses on the calculation of combustion wave speeds using an asymptotic technique based on the ratio of activation energy to heat release being considered large. As heat loss is increased twin flame speeds emerge (as in the classical large activation energy analysis) with an extinction heat loss. Formulae for the non-adiabatic wave speed and extinction heat loss are found which apply over a wider range of activation energies (because of the nature of the asymptotics) and these are explored for moderate and large Lewis number cases—the latter representing the combustion wave progress in a solid. Some of the oscillatory instabilities are investigated numerically for the case of a reactive solid.
In this paper, we study the asymptotic behavior of an SIRS epidemic model with a time delay in the recovered class and a nonlinear incidence rate. A conjecture of Hethcote et al. [5] on the global stability of the disease-free equilibrium is solved. Moreover, we analyse the model when the contact number takes its threshold value. We show that solutions tend to either the disease-free equilibrium or to a unique positive endemic equilibrium, and there is no periodic solution.
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Here we consider a particular class of stochastic geometric programs in which the randomness occurs in the decision variables. Specifically we analyse a program in which we specify a joint normal probability for the dicision variables and require the constraint set to be satisfied in the chance constrained mode. A numerical example is given to illustrate the approach.