We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The well-known fiber dimension theorem in algebraic geometry says that for every morphism f:X→Y of integral schemes of finite type the dimension of every fiber of f is at least dim X−dim Y. This has recently been generalized by Brosnan, Reichstein and Vistoli to certain morphisms of algebraic stacks f:𝒳→𝒴, where the usual dimension is replaced by essential dimension. We will prove a general version for morphisms of categories fibered in groupoids. Moreover, we will prove a variant of this theorem, where essential dimension and canonical dimension are linked. These results let us relate essential dimension to canonical dimension of algebraic groups. In particular, using the recent computation of the essential dimension of algebraic tori by MacDonald, Meyer, Reichstein and the author, we establish a lower bound on the canonical dimension of algebraic tori.
We prove the Nagata compactification theorem for any separated map of finite type between quasi-compact and quasi-separated algebraic spaces, generalizing earlier results of Raoult. Along the way we also prove (and use) absolute noetherian approximation for such algebraic spaces, generalizing earlier results in the case of schemes.
We prove two flat descent results in the setting of Artin n-stacks. First of all, a stack for the etale topology which is an Artin n-stack (in the sense of Simpson and Toën–Vezzosi) is also a stack for the flat (fppf) topology. Moreover, an n-stack, for the fppf topology, which admits a flat (fppf) n-atlas is an Artin n-stack (i.e. possesses a smooth n-atlas). We deduce from these two results a comparison between etale and fppf cohomologies (with coefficients in non-smooth group schemes and also non-abelian). This work is written in the setting of the derived stacks of Toën and Vezzosi, and all of these results are therefore also valid for derived Artin n-stacks.
Let X be an algebraic variety over a base scheme S and ϕ:T→S a base change. Given an admissible subcategory 𝒜 in 𝒟b(X), the bounded derived category of coherent sheaves on X, we construct under some technical conditions an admissible subcategory 𝒜T in 𝒟b(X×ST), called the base change of 𝒜, in such a way that the following base change theorem holds: if a semiorthogonal decomposition of 𝒟b (X)is given, then the base changes of its components form a semiorthogonal decomposition of 𝒟b (X×ST) . As an intermediate step, we construct a compatible system of semiorthogonal decompositions of the unbounded derived category of quasicoherent sheaves on X and of the category of perfect complexes on X. As an application, we prove that the projection functors of a semiorthogonal decomposition are kernel functors.
We introduce quasi-invariant polynomials for an arbitrary finite complex reflection group W. Unlike in the Coxeter case, the space of quasi-invariants of a given multiplicity is not, in general, an algebra but a module Qk over the coordinate ring of a (singular) affine variety Xk. We extend the main results of Berest et al. [Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337] to this setting: in particular, we show that the variety Xk and the module Qk are Cohen–Macaulay, and the rings of differential operators on Xk and Qk are simple rings, Morita equivalent to the Weyl algebra An(ℂ) , where n=dim Xk. Our approach relies on representation theory of complex Cherednik algebras introduced by Dunkl and Opdam [Dunkl operators for complex reflection groups, Proc. London Math. Soc. (3) 86 (2003), 70–108] and is parallel to that of Berest et al. As an application, we prove the existence of shift operators for an arbitrary complex reflection group, confirming a conjecture of Dunkl and Opdam. Another result is a proof of a conjecture of Opdam, concerning certain operations (KZ twists) on the set of irreducible representations of W.
We determine the real counting function N(q) (q∈[1,∞)) for the hypothetical ‘curve’ over 𝔽1, whose corresponding zeta function is the complete Riemann zeta function. We show that such a counting function exists as a distribution, is positive on (1,∞) and takes the value −∞ at q=1 as expected from the infinite genus of C. Then, we develop a theory of functorial 𝔽1-schemes which reconciles the previous attempts by Soulé and Deitmar. Our construction fits with the geometry of monoids of Kato, is no longer limited to toric varieties and it covers the case of schemes associated with Chevalley groups. Finally we show, using the monoid of adèle classes over an arbitrary global field, how to apply our functorial theory of -schemes to interpret conceptually the spectral realization of zeros of L-functions.
The notion of a prolongation of an algebraic variety is developed in an abstract setting that generalizes the difference and (Hasse) differential contexts. An interpolating map that compares these prolongation spaces with algebraic jet spaces is introduced and studied.
In this paper, we show that there is an equivalence between the 2-category of smooth Deligne–Mumford stacks with torus embeddings and actions and the 1-category of stacky fans. To this end, we prove two main results. The first is related to a combinatorial aspect of the 2-category of toric algebraic stacks defined by I. Iwanari [Logarithmic geometry, minimal free resolutions and toric algebraic stacks, Preprint (2007)]; we establish an equivalence between the 2-category of toric algebraic stacks and the 1-category of stacky fans. The second result provides a geometric characterization of toric algebraic stacks. Logarithmic geometry in the sense of Fontaine–Illusie plays a central role in obtaining our results.
We present a simple description of moduli spaces of torsion-free 𝒟-modules (𝒟-bundles) on general smooth complex curves, generalizing the identification of the space of ideals in the Weyl algebra with Calogero–Moser quiver varieties. Namely, we show that the moduli of 𝒟-bundles form twisted cotangent bundles to moduli of torsion sheaves on X, answering a question of Ginzburg. The corresponding (untwisted) cotangent bundles are identified with moduli of perverse vector bundles on T*X, which contain as open subsets the moduli of framed torsion-free sheaves (the Hilbert schemes T*X[n] in the rank-one case). The proof is based on the description of the derived category of 𝒟-modules on X by a noncommutative version of the Beilinson transform on P1.
Let k be a complete, non-Archimedean valued field (the trivial absolute value is allowed) and let φ:X→Y be a morphism between two Berkovich k-analytic spaces; we show that, for any integer n, the set of points of X at which the local dimension of φ is at least equal to n is a Zariski-closed subset of X. In order to establish it, we first prove an analytic analogue of Zariski’s Main Theorem, and we also introduce, and study, the notion of an analytic system of parameters at a point.
Certain properties of ascending sequences of quotient rings of points of algebraic varieties were investigated by O. Zariski in [4] and some related problems were discussed in [3].