To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fujino gave a proof for the semi-ampleness of the moduli part in the canonical bundle formula in the case when the general fibers are K3 surfaces or abelian varieties. We show a similar statement when the general fibers are primitive symplectic varieties. This answers a question of Fujino raised in the same article. Moreover, using the structure theory of varieties with trivial first Chern class, we reduce the question of semi-ampleness in the case of families of K-trivial varieties to a question when the general fibers satisfy a slightly weaker Calabi–Yau condition.
Using $L^2$-methods, we prove a vanishing theorem for tame harmonic bundles over quasi-compact Kähler manifolds in a very general setting. As a special case, we give a completely new proof of the Kodaira-type vanishing theorems for Higgs bundles due to Arapura. To prove our vanishing theorem, we construct a fine resolution of the Dolbeault complex for tame harmonic bundles via the complex of sheaves of $L^2$-forms, and we establish the Hörmander $L^2$-estimate and solve $(\bar {\partial }_E+\theta )$-equations for Higgs bundles $(E,\theta )$.
Let $X$ be an $n$-dimensional (smooth) intersection of two quadrics, and let ${T^{\rm{*}}}X$ be its cotangent bundle. We show that the algebra of symmetric tensors on $X$ is a polynomial algebra in $n$ variables. The corresponding map ${\rm{\Phi }}:{T^{\rm{*}}}X \to {\mathbb{C}^n}$ is a Lagrangian fibration, which admits an explicit geometric description; its general fiber is a Zariski open subset of an abelian variety, which is a quotient of a hyperelliptic Jacobian by a $2$-torsion subgroup. In dimension $3$, ${\rm{\Phi }}$ is the Hitchin fibration of the moduli space of rank $2$ bundles with fixed determinant on a curve of genus $2$.
We show the properness of the moduli stack of stable surfaces over $\mathbb{Z}\left[ {1/30} \right]$, assuming the locally-stable reduction conjecture for stable surfaces. This relies on a local Kawamata–Viehweg vanishing theorem for 3-dimensional log canonical singularities at closed point of characteristic $p \ne 2,3$ and $5$, which are not log canonical centres.
We compute odd-degree genus 1 quasimap and Gromov–Witten invariants of moduli spaces of Higgs ${\rm{S}}{{\rm{L}}_2}$-bundles on a curve of genus $g \geqslant 2$. We also compute certain invariants for all prime ranks. This proves some parts of the author’s conjectures on quasimap invariants of moduli spaces of Higgs bundles. More generally, our methods provide a computation scheme for genus 1 quasimap and Gromov–Witten invariants in the case when degrees of maps are coprime to the rank. This requires an analysis of the localisation formula for certain Quot schemes parametrising higher-rank quotients on an elliptic curve. Invariants for degrees that are not coprime to the rank exhibit a very different structure for a reason that we explain.
KSB stability holds at codimension $1$ points trivially, and it is quite well understood at codimension $2$ points because we have a complete classification of $2$-dimensional slc singularities. We show that it is automatic in codimension $3$.
We prove that the period mapping is dominant for elliptic surfaces over an elliptic curve with $12$ nodal fibers, and that its degree is larger than $1$. This settles the final case of infinitesimal Torelli for a generic elliptic surface.
Mirror symmetry for a semistable degeneration of a Calabi–Yau manifold was first investigated by Doran–Harder–Thompson when the degenerate fiber is a union of two quasi-Fano manifolds. They proposed a topological construction of a mirror Calabi–Yau by gluing of two Landau–Ginzburg models that are mirror to those Fano manifolds. We extend this construction to a general type semistable degeneration where the dual boundary complex of the degenerate fiber is the standard N-simplex. Since each component in the degenerate fiber comes with the simple normal crossing anticanonical divisor, one needs the notion of a hybrid Landau–Ginzburg model – a multipotential analogue of classical Landau–Ginzburg models. We show that these hybrid Landau–Ginzburg models can be glued to be a topological mirror candidate for the nearby Calabi–Yau, which also exhibits the structure of a Calabi–Yau fibration over $\mathbb P^N$. Furthermore, it is predicted that the perverse Leray filtration associated to this fibration is mirror to the monodromy weight filtration on the degeneration side [12]. We explain how this can be deduced from the original mirror P=W conjecture [18].
Let $X$ denote the ‘conifold smoothing’, the symplectic Weinstein manifold which is the complement of a smooth conic in $T^*S^3$ or, equivalently, the plumbing of two copies of $T^*S^3$ along a Hopf link. Let $Y$ denote the ‘conifold resolution’, by which we mean the complement of a smooth divisor in $\mathcal {O}(-1) \oplus \mathcal {O}(-1) \to \mathbb {P}^1$. We prove that the compactly supported symplectic mapping class group of $X$ splits off a copy of an infinite-rank free group, in particular is infinitely generated; and we classify spherical objects in the bounded derived category $D(Y)$ (the three-dimensional ‘affine $A_1$-case’). Our results build on work of Chan, Pomerleano and Ueda and Toda, and both theorems make essential use of working on the ‘other side’ of the mirror.
We prove several boundedness statements for geometrically integral normal del Pezzo surfaces X over arbitrary fields. We give an explicit sharp bound on the irregularity if X is canonical or regular. In particular, we show that wild canonical del Pezzo surfaces exist only in characteristic $2$. As an application, we deduce that canonical del Pezzo surfaces form a bounded family over $\mathbb {Z}$, generalising work of Tanaka. More generally, we prove the BAB conjecture on the boundedness of $\varepsilon $-klt del Pezzo surfaces over arbitrary fields of characteristic different from $2, 3$ and $5$.
We construct the first example of a stable hyperholomorphic vector bundle of rank five on every hyper-Kähler manifold of $\mathrm {K3}^{[2]}$-type whose deformation space is smooth of dimension 10. Its moduli space is birational to a hyper-Kähler manifold of type OG10. This provides evidence for the expectation that moduli spaces of sheaves on a hyper-Kähler could lead to new examples of hyper-Kähler manifolds.
Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini–Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the Kähler–Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.
Sextic double solids, double covers of $\mathbb P^3$ branched along a sextic surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are expected to behave very rigidly in terms of birational geometry. Smooth sextic double solids, and those which are $\mathbb Q$-factorial with ordinary double points, are known to be birationally rigid. In this paper, we study sextic double solids with an isolated compound $A_n$ singularity. We prove a sharp bound $n \leq 8$, describe models for each n explicitly, and prove that sextic double solids with $n> 3$ are birationally nonrigid.
We categorify the inclusion–exclusion principle for partially ordered topological spaces and schemes to a filtration on the derived category of sheaves. As a consequence, we obtain functorial spectral sequences that generalize the two spectral sequences of a stratified space and certain Vassiliev-type spectral sequences; we also obtain Euler characteristic analogs in the Grothendieck ring of varieties. As an application, we give an algebro-geometric proof of Vakil and Wood's homological stability conjecture for the space of smooth hypersurface sections of a smooth projective variety. In characteristic zero this conjecture was previously established by Aumonier via topological methods.
We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed K3 surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$. In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ($10\leq k \leq 18$) or scalar-valued cusp forms (odd $k\geq 19$) for the modular group. These results are in fact proved in the generality of lattice-polarisation.
The $4 n^2$-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type $cA_1$, and obtain a $2 n^2$-inequality for $cA_1$ points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree $1$ over $\mathbb {P}^1$ satisfying the $K^2$-condition, all of which have at most terminal $cA_1$ singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a $cA_1$ point which is not an ordinary double point.
We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.
In this article, we study quasimaps to moduli spaces of sheaves on a $K3$ surface S. We construct a surjective cosection of the obstruction theory of moduli spaces of $\epsilon $-stable quasimaps. We then establish reduced wall-crossing formulas which relate the reduced Gromov–Witten theory of moduli spaces of sheaves on S and the reduced Donaldson–Thomas theory of $S\times C$, where C is a nodal curve. As applications, we prove the Hilbert-schemes part of the Igusa cusp form conjecture; higher-rank/rank-one Donaldson–Thomas correspondence with relative insertions on $S\times C$, if $g(C)\leq 1$; Donaldson–Thomas/Pandharipande–Thomas correspondence with relative insertions on $S\times \mathbb {P}^1$.
The goal of this paper is to describe certain nonlinear topological obstructions for the existence of first-order smoothings of mildly singular Calabi–Yau varieties of dimension at least $4$. For nodal Calabi–Yau threefolds, a necessary and sufficient linear topological condition for the existence of a first-order smoothing was first given in [Fri86]. Subsequently, Rollenske–Thomas [RT09] generalized this picture to nodal Calabi–Yau varieties of odd dimension by finding a necessary nonlinear topological condition for the existence of a first-order smoothing. In a complementary direction, in [FL22a], the linear necessary and sufficient conditions of [Fri86] were extended to Calabi–Yau varieties in every dimension with $1$-liminal singularities (which are exactly the ordinary double points in dimension $3$ but not in higher dimensions). In this paper, we give a common formulation of all of these previous results by establishing analogues of the nonlinear topological conditions of [RT09] for Calabi–Yau varieties with weighted homogeneous k-liminal hypersurface singularities, a broad class of singularities that includes ordinary double points in odd dimensions.
We give a lattice-theoretic characterization for a manifold of $\operatorname {\mathrm {OG10}}$ type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of $\operatorname {\mathrm {OG10}}$ type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.