To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the derived category of a curve is embedded into the derived category of the moduli space of vector bundles on the curve of coprime rank and degree. We also generalize the semiorthogonal decomposition constructed by Narasimhan and Belmans-Mukhopadhyay. Finally, we produce a one-dimensional family of ACM bundles over the moduli space.
We give conditions for a uniruled variety of dimension at least 2 to be nonsolid. This study provides further evidence to a conjecture by Abban and Okada on the solidity of Fano 3-folds. To complement our results we write explicit birational links from Fano 3-folds of high codimension embedded in weighted projective spaces.
Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.
For an algebraic K3 surface with complex multiplication (CM), algebraic fibres of the associated twistor space away from the equator are again of CM type. In this paper, we show that algebraic fibres corresponding to points at the same altitude of the twistor base ${S^2} \simeq \mathbb{P}_\mathbb{C}^1$ share the same CM endomorphism field. Moreover, we determine all the admissible Picard numbers of the twistor fibres.
In this work, we study the Humbert-Edge curves of type 5, defined as a complete intersection of four diagonal quadrics in ${\mathbb{P}}^5$. We characterize them using Kummer surfaces, and using the geometry of these surfaces, we construct some vanishing thetanulls on such curves. In addition, we describe an argument to give an isomorphism between the moduli space of Humbert-Edge curves of type 5 and the moduli space of hyperelliptic curves of genus 2, and we show how this argument can be generalized to state an isomorphism between the moduli space of hyperelliptic curves of genus $g=\frac{n-1}{2}$ and the moduli space of Humbert-Edge curves of type $n\geq 5$ where $n$ is an odd number.
We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided and involves Hermitian lattices over number fields.
Let f be an isolated singularity at the origin of $\mathbb {C}^n$. One of many invariants that can be associated with f is its Łojasiewicz exponent $\mathcal {L}_0 (f)$, which measures, to some extent, the topology of f. We give, for generic surface singularities f, an effective formula for $\mathcal {L}_0 (f)$ in terms of the Newton polyhedron of f. This is a realization of one of Arnold’s postulates.
Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$, that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
We study the Hodge and weight filtrations on the localization along a hypersurface, using methods from birational geometry and the V-filtration induced by a local defining equation. These filtrations give rise to ideal sheaves called weighted Hodge ideals, which include the adjoint ideal and a multiplier ideal. We analyze their local and global properties, from which we deduce applications related to singularities of hypersurfaces of smooth varieties.
We introduce the notion of a simple fibration in $(1,2)$-surfaces – that is, a hypersurface inside a certain weighted projective space bundle over a curve such that the general fibre is a minimal surface of general type with $p_g=2$ and $K^2=1$. We prove that almost all Gorenstein simple fibrations over the projective line with at worst canonical singularities are canonical threefolds ‘on the Noether line’ with $K^3=\frac 43 p_g-\frac {10}3$, and we classify them. Among them, we find all the canonical threefolds on the Noether line that have previously appeared in the literature.
The Gorenstein simple fibrations over ${\mathbb {P}}^1$ are Cartier divisors in a toric $4$-fold. This allows to us to show, among other things, that the previously known canonical threefolds on the Noether line form an open subset of the moduli space of canonical threefolds, that the general element of this component is a Mori Dream Space and that there is a second component when the geometric genus is congruent to $6$ modulo $8$; the threefolds in this component are new.
We give an explicit characterization on the singularities of exceptional pairs in any dimension. In particular, we show that any exceptional Fano surface is $\frac {1}{42}$-lc. As corollaries, we show that any $\mathbb R$-complementary surface X has an n-complement for some integer $n\leq 192\cdot 84^{128\cdot 42^5}\approx 10^{10^{10.5}}$, and Tian’s alpha invariant for any surface is $\leq 3\sqrt {2}\cdot 84^{64\cdot 42^5}\approx 10^{10^{10.2}}$. Although the latter two values are expected to be far from being optimal, they are the first explicit upper bounds of these two algebraic invariants for surfaces.
We describe the Galois action on the middle $\ell $-adic cohomology of smooth, projective fourfolds $K_A(v)$ that occur as a fiber of the Albanese morphism on moduli spaces of sheaves on an abelian surface A with Mukai vector v. We show this action is determined by the action on $H^2_{\mathrm {\acute{e}t}}(A_{\bar {k}},{\mathbb Q}_{\ell }(1))$ and on a subgroup $G_A(v) \leqslant (A\times \hat {A})[3]$, which depends on v. This generalizes the analysis carried out by Hassett and Tschinkel over ${\mathbb C}$ [21]. As a consequence, over number fields, we give a condition under which $K_2(A)$ and $K_2(\hat {A})$ are not derived equivalent.
The points of $G_A(v)$ correspond to involutions of $K_A(v)$. Over ${\mathbb C}$, they are known to be symplectic and contained in the kernel of the map $\operatorname {\mathrm {Aut}}(K_A(v))\to \mathrm {O}(H^2(K_A(v),{\mathbb Z}))$. We describe this kernel for all varieties $K_A(v)$ of dimension at least $4$.
When $K_A(v)$ is a fourfold over a field of characteristic 0, the fixed-point loci of the involutions contain K3 surfaces whose cycle classes span a large portion of the middle cohomology. We examine the fixed-point locus on fourfolds $K_A(0,l,s)$ over ${\mathbb C}$ where A is $(1,3)$-polarized, finding the K3 surface to be elliptically fibered under a Lagrangian fibration of $K_A(0,l,s)$.
Let $\sigma $ be a stability condition on the bounded derived category $D^b({\mathop{\mathrm {Coh}}\nolimits } W)$ of a Calabi–Yau threefold W and $\mathcal {M}$ a moduli stack parametrizing $\sigma $-semistable objects of fixed topological type. We define generalized Donaldson–Thomas invariants which act as virtual counts of objects in $\mathcal {M}$, fully generalizing the approach introduced by Kiem, Li and the author in the case of semistable sheaves. We construct an associated proper Deligne–Mumford stack $\widetilde {\mathcal {M}}^{\mathbb {C}^{\ast }}$, called the $\mathbb {C}^{\ast }$-rigidified intrinsic stabilizer reduction of $\mathcal {M}$, with an induced semiperfect obstruction theory of virtual dimension zero, and define the generalized Donaldson–Thomas invariant via Kirwan blowups to be the degree of the associated virtual cycle $[\widetilde {\mathcal {M}}]^{\mathrm {vir}} \in A_0(\widetilde {\mathcal {M}})$. This stays invariant under deformations of the complex structure of W. Applications include Bridgeland stability, polynomial stability, Gieseker and slope stability.
We show that a sufficiently general hypersurface of degree d in $\mathbb {P}^n$ admits a toric Gröbner degeneration after linear change of coordinates if and only if $d\leq 2n-1$.
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
Gross and Siebert developed a program for constructing in arbitrary dimension a mirror family to a log Calabi–Yau pair (X, D), consisting of a smooth projective variety X with a normal-crossing anti-canonical divisor D in X. In this paper, we provide an algorithm to practically compute explicit equations of the mirror family in the case when X is obtained as a blow-up of a toric variety along hypersurfaces in its toric boundary, and D is the strict transform of the toric boundary. The main ingredient is the heart of the canonical wall structure associated to such pairs (X, D), which is constructed purely combinatorially, following our previous work with Mark Gross. In the case when we blow up a single hypersurface we show that our results agree with previous results computed symplectically by Aroux–Abouzaid–Katzarkov. In the situation when the locus of blow-up is formed by more than a single hypersurface, due to infinitely many walls interacting, writing the equations becomes significantly more challenging. We provide the first examples of explicit equations for mirror families in such situations.
This paper is devoted to determine the geometry of a class of smooth projective rational surfaces whose minimal models are the Hirzebruch ones; concretely, they are obtained as the blowup of a Hirzebruch surface at collinear points. Explicit descriptions of their effective monoids are given, and we present a decomposition for every effective class. Such decomposition is used to confirm the effectiveness of some divisor classes when the Riemann–Roch theorem does not give information about their effectiveness. Furthermore, we study the nef divisor classes on such surfaces. We provide an explicit description for their nef monoids, and, moreover, we present a decomposition for every nef class. On the other hand, we prove that these surfaces satisfy the anticanonical orthogonal property. As a consequence, the surfaces are Harbourne–Hirschowitz and their Cox rings are finitely generated. Finally, we prove that the complete linear system associated with any nef divisor is base-point-free; thus, the semi-ample and nef monoids coincide. The base field is assumed to be algebraically closed of arbitrary characteristic.
This papers classifies toric Fano threefolds with singular locus $\{ \frac {1}{k}(1,1,1) \}$ for $k \in \mathbb {Z}_{\geq 1}$ building on the work of Batyrev (1981, Nauk SSSR Ser. Mat. 45, 704–717) and Watanabe–Watanabe (1982, Tokyo J. Math. 5, 37–48). This is achieved by completing an equivalent problem in the language of Fano polytopes. Furthermore, we identify birational relationships between entries of the classification. For a fixed value $k \geq 4$, there are exactly two such toric Fano threefolds linked by a blowup in a torus-invariant line.