To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given an R-module M, the centralizer near-ring ℳR (M) is the set of all functions f: M → M with f(xr)= f(x)r for all x ∈ M and r∈R endowed with point-wise addition and composition of functions as multiplication. In general, ℳR(M) is not a ring but is a near-ring containing the endomorphism ring ER(M) of M. Necessary and/or sufficient conditions are derived for ℳR(M) to be a ring. For the case that R is a Dedekind domain, the R-modules M are characterized for which (i) ℳR(M) is a ring; and (ii)ℳR(M) = ER(M). It is shown that over Dedekind domains with finite prime spectrum properties (i) and (ii) are equivalent.
Let R be any ring with identity, M a unital right R-module and α ≥ 0 an ordinal. Then M is a direct sum of a semisimple module and a module having Krull dimension at most α if and only if for every submodule N of M there exists a direct summand K of M such that K ⊆ N and N/K has Krull dimension at most α.
We present structural properties of the complex associative algebra generated by the canonical commutation relations in exponential form. In particular, we show it to be a central simple algebra that lacks zero divisors and is not Noetherian on either side; in addition, we determine explicitly its units and its automorphisms.
Directly indecomposable absolute subretracts that are commutative Noetherian rings are described. This is an application of our main result characterizing unital directly indecomposable absolute subretracts which contain a maximal ideal with nonzero annihilator.
Let R be an artinian ring. A family, ℳ, of isomorphism types of R-modules of finite length is said to be canonical if every R-module of finite length is a direct sum of modules whose isomorphism types are in ℳ. In this paper we show that ℳ is canonical if the following conditions are simultaneously satisfied: (a) ℳ contains the isomorphism type of every simple R-module; (b) ℳ has a preorder with the property that every nonempty subfamily of ℳ with a common bound on the lengths of its members has a smallest type; (c) if M is a nonsplit extension of a module of isomorphism type II1 by a module of isomorphism type II2, with II1, II2 in ℳ, then M contains a submodule whose type II3 is in ℳ and II1 does not precede II3. We use this result to give another proof of Kronecker's theorem on canonical pairs of matrices under equivalence. If R is a tame hereditary finite-dimensional algebra we show that there is a preorder on the family of isomorphism types of indecomposable R-modules of finite length that satisfies Conditions (b) and (c).