To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we consider stochastic recursive equations of sum type, , and of max type, , where Ai, bi, and b are random, (Xi) are independent, identically distributed copies of X, and denotes equality in distribution. Equations of these types typically characterize limits in the probabilistic analysis of algorithms, in combinatorial optimization problems, and in many other problems having a recursive structure. We develop some new contraction properties of minimal Ls-metrics which allow us to establish general existence and uniqueness results for solutions without imposing any moment conditions. As an application we obtain a one-to-one relationship between the set of solutions to the homogeneous equation and the set of solutions to the inhomogeneous equation, for sum- and max-type equations. We also give a stochastic interpretation of a recent transfer principle of Rösler from nonnegative solutions of sum type to those of max type, by means of random scaled Weibull distributions.
Consider a countable list of files updated according to the move-to-front rule. Files have independent random weights, which are used to construct request probabilities. Exact and asymptotic formulae for the Laplace transform of the stationary search cost are given for i.i.d. weights. Similar expressions are derived for the first two moments. Some results are extended to the case of independent weights.
We investigate the limit distributions associated with cost measures in Sattolo's algorithm for generating random cyclic permutations. The number of moves made by an element turns out to be a mixture of 1 and 1 plus a geometric distribution with parameter ½, where the mixing probability is the limiting ratio of the rank of the element being moved to the size of the permutation. On the other hand, the raw distance traveled by an element to its final destination does not converge in distribution without norming. Linearly scaled, the distance converges to a mixture of a uniform and a shifted product of a pair of independent uniforms. The results are obtained via randomization as a transform, followed by derandomization as an inverse transform. The work extends analysis by Prodinger.