To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the study of the spectra of algebras of holomorphic functions on a Banach space E, the bidual E″ has a central role, and the spectrum is often shown to be locally homeomorphic to E″. In this paper we consider the problem of spectra of subalgebras invariant under the action of a group (functions f such that f ○ g = f). It is natural to attempt a characterization in terms of the space of orbits E″/~ obtained from E″ through the action of the group, so we pursue this approach here and introduce an analytic structure on the spectrum in some situations. In other situations we encounter some obstacles: in some cases, the lack of structure of E″/~ itself; in others, problems of weak continuity and non-approximability of functions in the algebra. We also define a convolution operation related to the spectrum.
In this paper, we study the bounded approximation property for the weighted space $\mathcal{HV}$(U) of holomorphic mappings defined on a balanced open subset U of a Banach space E and its predual $\mathcal{GV}$(U), where $\mathcal{V}$ is a countable family of weights. After obtaining an $\mathcal{S}$-absolute decomposition for the space $\mathcal{GV}$(U), we show that E has the bounded approximation property if and only if $\mathcal{GV}$(U) has. In case $\mathcal{V}$ consists of a single weight v, an analogous characterization for the metric approximation property for a Banach space E has been obtained in terms of the metric approximation property for the space $\mathcal{G}_v$(U).
We consider the algebra of holomorphic functions on L∞ that are symmetric, i.e. that are invariant under composition of the variable with any measure-preserving bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences such that is bounded and turns to be separable. All this follows from our main result that the subalgebra of symmetric polynomials on L∞ has a natural algebraic basis.
In this short note, we correct and reformulate Theorem 3.1 in the paper published in Proceedings of the Edinburgh Mathematical Society58(3) (2015), 617–629.
We analyze domination properties and factorization of operators in Banach spaces through subspaces of $L^{1}$-spaces. Using vector measure integration and extending classical arguments based on scalar integral bounds, we provide characterizations of operators factoring through subspaces of $L^{1}$-spaces of finite measures. Some special cases involving positivity and compactness of the operators are considered.
In this paper we prove coincidence results concerning spaces of absolutely summing multilinear mappings between Banach spaces. The nature of these results arises from two distinct approaches: the coincidence of two a priori different classes of summing multilinear mappings, and the summability of all multilinear mappings defined on products of Banach spaces. Optimal generalizations of known results are obtained. We also introduce and explore new techniques in the field: for example, a technique to extend coincidence results for linear, bilinear and even trilinear mappings to general multilinear ones.
In this paper, we establish a translation theorem for the generalised analytic Feynman integral of functionals that belong to the Banach algebra ${\mathcal{F}}(C_{a,b}[0,T])$.
We make some comments on the existence, uniqueness and integrability of the scalar derivatives and approximate scalar derivatives of vector-valued functions. We are particularly interested in the connection between scalar differentiation and the weak Radon–Nikodým property.
We prove that for a large class of Banach function spaces continuity and holomorphy of superposition operators are equivalent and that bounded superposition operators are continuous. We also use techniques from infinite dimensional holomorphy to establish the boundedness of certain superposition operators. Finally, we apply our results to the study of superposition operators on weighted spaces of holomorphic functions and the $F(p, \alpha , \beta )$ spaces of Zhao. Some independent properties on these spaces are also obtained.
The purpose of this paper is to study the existence of periodic solutions and the topological structure of the solution set of first-order differential equations involving the distributional Henstock–Kurzweil integral. The distributional Henstock–Kurzweil integral is a general integral, which includes the Lebesgue and Henstock–Kurzweil integrals. The main results extend some previously known results in the literature.
In this paper, using the Schauder Fixed Point Theorem and the Vidossich Theorem, we study the existence of solutions and the structure of the set of solutions of the Darboux problem involving the distributional Henstock–Kurzweil integral. The two theorems presented in this paper are extensions of the previous results of Deblasi and Myjak and of Bugajewski and Szufla.
In the spectrum of the algebra of symmetric analytic functions of bounded type on ℓp, 1 ≤ p < +∞, and along the same lines as the general non-symmetric case, we define and study a convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of analytic functions of bounded type on ℓ1 is isometrically isomorphic to an algebra of symmetric analytic functions on a polydisc of ℓ1. We also consider the existence of algebraic projections between algebras of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.
A submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .
A tensor norm β=(βn)∞n=1 is smooth if the natural correspondence where 𝕂=ℝ or ℂ, is always an isometric isomorphism. In this paper we study the representation of multi-ideals and of ideals of multilinear forms by smooth tensor norms.
Using the Kobayashi distance, we provide sufficient conditions for the intersection of a family of holomorphic retracts in a Banach space to also be a holomorphic retract.
It is known that all k-homogeneous orthogonally additive polynomials P over C(K) are of the form
Thus, x ↦ xk factors all orthogonally additive polynomials through some linear form μ. We show that no such linearization is possible without homogeneity. However, we also show that every orthogonally additive holomorphic function of bounded type f over C(K) is of the form
for some μ and holomorphic h : C (K) → L1(μ) of bounded type.
The duality properties of the integration map associated with a vector measure m are used to obtain a representation of the (pre)dual space of the space Lp(m) of p-integrable functions (where 1<p<∞) with respect to the measure m. For this, we provide suitable topologies for the tensor product of the space of q-integrable functions with respect to m (where p and q are conjugate real numbers) and the dual of the Banach space where m takes its values. Our main result asserts that under the assumption of compactness of the unit ball with respect to a particular topology, the space Lp(m) can be written as the dual of a suitable normed space.
A characterization of Banach spaces possessing the weak Radon–Nikodým property is given in terms of finitely additive interval functions. Due to that characterization several Banach space valued set functions that are only finitely additive can be represented as integrals.
Some classical examples in vector integration due to Phillips, Hagler and Talagrand are revisited from the point of view of the Birkhoff and McShane integrals.
We introduce the spaces Vℬp(X) (respectively 𝒱ℬp(X)) of the vector measures ℱ:Σ→X of bounded (p,ℬ)-variation (respectively of bounded (p,ℬ)-semivariation) with respect to a bounded bilinear map ℬ:X×Y →Z and show that the spaces Lℬp(X) consisting of functions which are p-integrable with respect to ℬ, defined in by Blasco and Calabuig [‘Vector-valued functions integrable with respect to bilinear maps’, Taiwanese Math. J. to appear], are isometrically embedded in Vℬp(X). We characterize 𝒱ℬp(X) in terms of bilinear maps from Lp′×Y into Z and Vℬp(X) as a subspace of operators from Lp′(Z*) into Y*. Also we define the notion of cone absolutely summing bilinear maps in order to describe the (p,ℬ)-variation of a measure in terms of the cone-absolutely summing norm of the corresponding bilinear map from Lp′×Y into Z.