We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a multidirectional mean value inequality with second order information. This result extends the classical Clarke-Ledyaev's inequality to the second order. As application, we give the uniqueness of viscosity solution of second order Hamilton-Jacobi equations in finite dimensions.
Let E be a Banach space whose dual E* has the approximation property, and let m be an index. We show that E* has the Radon-Nikodým property if and only if every m-homogeneous integral polynomial from E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear polynomials.
The integration of vector (and operator) valued functions with respect to vector (and operator) valued measures can be simplified by assuming that the measures involved take values in the positive elements of a Banach lattice.
We investigate certain norm and continuity conditions that provide us with ‘uniqe Hahn-Banch Theorems’ from (nc0) to (nℓ∞) and from N(nE) to N(nE″). We show that there is a unique norm-preserving extension for norm-attaining 2-homogeneous polynomials on complex c0 to ℓ∈ but there is no unique norm-preserving extension from (3c0) to (3ℓ∈).
Let X be a locally convex space. Kluvánek associated to each X-valued countably additive vector measure a conical measure on X; this can also be done for finitely additive bounded vector measures. We prove that every conical measure u on X, whose associated zonoform Ku is contained in X, is associated to a bounded additive vector measure σ(u) defined on X, and satisfying σ(u)(H) ∈ H, for every finite intersection H of closed half-spaces. When X is a complete weak space, we prove that σ(u) is countably additive. This allows us to recover two results of Kluvánek: for any X, every conical measure u on it with Ku ⊆ X is associated to a countably additive X-valued vector measure; and every conical measure on a complete weak space is localizable. When X is a Banach space, we prove that σ(u) is countably additive if and only if u is the conical measure associated to a Pettis differentiable vector measure.
We consider the space L1 (ν, X) of all real functions that are integrable with respect to a measure v with values in a real Fréchet space X. We study L-weak compactness in this space. We consider the problem of the relationship between the existence of copies of l∞ in the space of all linear continuous operators from a complete DF-space Y to a Fréchet lattice E with the Lebesgue property and the coincidence of this space with some ideal of compact operators. We give sufficient conditions on the measure ν and the space X that imply that L1 (ν, X) has the Dunford-Pettis property. Applications of these results to Fréchet AL-spaces and Köthe sequence spaces are also given.
The second dual of the vector-valued function space C0(S, A) is characterized in terms of generalized functions in the case where A* and A** have the Radon-Nikodým property. As an application we present a simple proof that C0 (S, A) is Arens regular if and only if A is Arens regular in this case. A representation theorem of the measure μh is given, where , h ∈ L∞ (|μ;|, A**) and μh is defined by the Arens product.
Defining a Radon-type integration process we extend the Alexandroff, Fichtengolts-KantorovichHildebrandt and Riesz integral representation theorems in partially ordered vector spaces.
We also identify some classes of operators with other classes of operator-valued set functions, the correspondence between operator and operator-valued set function being given by integration.
All these established results can be immediately applied in C* -algebras (especially in W* -algebras and AW* -algebras of type I), in Jordan algebras, in partially ordered involutory (O*-)algebras, in semifields, in quantum probability theory, as well as in the operator Feynman-Kac formula.
The theory of multimeasures (set valued measures), has its origins in mathematical economics and in particular in equilibrium theory for exchange economies with production, in which the coalitions and not the individual agents are the basic economic units (see Vind [25] and Hildenbrand [15]). Since then the subject of multimeasures has been developed extensively. Important contributions were made, among others, by Artstein [1], Costé [8], [9], Costé and Pallu de la Barrière [10], Drewnowski [12], Godet-Thobie [13], Hiai [14] and Pallu de la Barrière [17]. Further applications in mathematical economics can be found in Klein and Thompson [16] and Papageorgiou [19].
The lack of completeness with respect to the semivariation norm, of the space of Banach space valued functions, Pettis integrable with respect to a measure μ, often impedes the direct extension of results involving integral representations, true in the finite-dimensional setting, to the general vector space setting. It is shown here that the space of functions with values in a space Y, μ-Archimedes integrable in a Banach space X embedded in Y, is complete with respect to convergence in semivariation, provided the embedding from X into Y is completely summing. The result is applied to the case when Y is a conuclear space, in particular, when X is a function space continuously included in a space of distributions.
The notion of a scalar operator on a Banach space, in the sense of N. Dunford, is widened so as to cover those operators which can be approximated in the operator norm by linear combinations of disjoint values of an additive and multiplicative operator valued set function, P, on an algebra of sets in a space Ω such that P(Ω) = I, subject to some conditions guaranteeing that this definition is unambiguous. An operator T turns out to be scalar in this sense, if and only if, there exists a (not necessarily bounded) Boolean algebra of bounded projections such that the Banach algebra of operators it generates is semisimple and contains T.
For a given vector measure n, an important problem, but in practice a difficult one, is to give a concrete description of the dual space of L1(n). In this note such a description is presented for an important class of measures n, namely the spectral measures (in the sense of N. Dunford) and certain other vector and operator-valued measures that they naturally induce. The basic idea is to represent the L1-spaces of such measures as a more familiar space whose dual space is known.
We continue the study of approximate subdifferentials initiated in [3], this time for functions on arbitrary locally convex spaces. The complexity of the infinite dimensional theory is in particular determined by the fact that various approaches and definitions which are equivalent in the finite dimensional situation are, in general, no longer equivalent if the space is infinite dimensional.
Let A be a commutative Banach algebra with identity of norm 1, X a Banach A-module and G a locally compact abeian group with Haar measure. Then the multipliers from an A -valued function algebra into an X-valued function space is studied. We characterize the multiplier spaces as the following isometrically isomorphic relations under some appropriate conditions: