$H^{\infty }$ symbols
$\mathrm{C}^{*}$-algebras hereditarily containing nonzero, square-zero elements
$C(X)$ WITH
$2^{\aleph _0}>\aleph _2$
$B^p_r(F_n)$ HAS NO NONTRIVIAL IDEMPOTENTS
$\varphi $-AMENABILITY OF DUAL BANACH ALGEBRAS