We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to develop an approach to obtain self-adjoint extensions of symmetric operators acting on anti-dual pairs. The main advantage of such a result is that it can be applied for structures not carrying a Hilbert space structure or a normable topology. In fact, we will show how hermitian extensions of linear functionals of involutive algebras can be governed by means of their induced operators. As an operator theoretic application, we provide a direct generalization of Parrott’s theorem on contractive completion of 2 by 2 block operator-valued matrices. To exhibit the applicability in noncommutative integration, we characterize hermitian extendibility of symmetric functionals defined on a left ideal of a $C^{\ast }$-algebra.
We introduce a notion of ‘hereditarily antisymmetric’ operator algebras and prove a structure theorem for them in finite dimensions. We also characterize those operator algebras in finite dimensions which can be made upper triangular and prove matrix analogs of the theorems of Dilworth and Mirsky for finite posets. Some partial results are obtained in the infinite dimensional case.
In this paper, we define the notion of monic representation for the $C^{\ast }$-algebras of finite higher-rank graphs with no sources, and we undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the commutative $C^{\ast }$-algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $\unicode[STIX]{x1D6EC}$-semibranching representations previously studied by Farsi, Gillaspy, Kang and Packer (Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl.434 (2015), 241–270) and also provide a universal representation model for non-negative monic representations.
The main purpose of this paper is to investigate some natural problems regarding the order structure of representable functionals on *-algebras. We describe the extreme points of order intervals, and give a non-trivial sufficient condition to decide whether or not the infimum of two representable functionals exists. To this aim, we offer a suitable approach to the Lebesgue decomposition theory, which is in complete analogy with the one developed by Ando in the context of positive operators. This tight analogy allows to invoke Ando's results to characterize uniqueness of the decomposition, and solve the infimum problem over certain operator algebras.
In this paper we prove the following result: let $m,n\geq 1$ be distinct integers, let $R$ be an $mn(m+n)|m-n|$-torsion free semiprime ring and let $D:R\rightarrow R$ be an $(m,n)$-Jordan derivation, that is an additive mapping satisfying the relation $(m+n)D(x^{2})=2mD(x)x+2nxD(x)$ for $x\in R$. Then $D$ is a derivation which maps $R$ into its centre.
Leti ${\Bbb F}$n be the free group of rank n and let $\bigoplus C^{*}({\Bbb F}_{n})$ denote the direct sum of full group C*-algebras $C^{*}({\Bbb F}_{n})$ of ${\Bbb F}_{n} (1\leq n<\infty$). We introduce a new comultiplication Δϕ on $\bigoplus C^{*}({\Bbb F}_{n})$ such that $(\bigoplus C^{*}({\Bbb F}_{n}),\,\Delta_{\varphi})$ is a non-cocommutative C*-bialgebra. With respect to Δϕ, the tensor product π⊗ϕπ′ of any two representations π and π′ of free groups is defined. The operation ×ϕ is associative and non-commutative. We compute its tensor product formulas of several representations.
We offer a Lebesgue-type decomposition of a representable functional on a *-algebra into absolutely continuous and singular parts with respect to another. Such a result was proved by Zs. Szűcs due to a general Lebesgue decomposition theorem of S. Hassi, H.S.V. de Snoo, and Z. Sebestyén concerning non-negative Hermitian forms. In this paper, we provide a self-contained proof of Szűcs' result and in addition we prove that the corresponding absolutely continuous parts are absolutely continuous with respect to each other.
It is an open question whether every derivation of a Fréchet GB$^{\ast }$-algebra $A[{\it\tau}]$ is continuous. We give an affirmative answer for the case where $A[{\it\tau}]$ is a smooth Fréchet nuclear GB$^{\ast }$-algebra. Motivated by this result, we give examples of smooth Fréchet nuclear GB$^{\ast }$-algebras which are not pro-C$^{\ast }$-algebras.
We show that every continuous self-adjoint functional on the noncommutative Schwartz space can be decomposed into a difference of two positive functionals. Moreover, this decomposition is minimal in the natural sense.
Towards an involutive analogue of a result on the semisimplicity of ${\ell }^{1} (S)$ by Hewitt and Zuckerman, we show that, given an abelian $\ast $-semigroup $S$, the commutative convolution Banach $\ast $-algebra ${\ell }^{1} (S)$ is $\ast $-semisimple if and only if Hermitian bounded semicharacters on $S$ separate the points of $S$; and we search for an intrinsic separation property on $S$ equivalent to $\ast $-semisimplicity. Very many natural involutive analogues of Hewitt and Zuckerman’s separation property are shown not to work, thereby exhibiting intricacies involved in analysis on $S$.
A hermitian algebra is a unital associative ℂ-algebra endowed with an involution such that the spectra of self-adjoint elements are contained in ℝ. In the case of an algebra 𝒜 endowed with a Mackey-complete, locally convex topology such that the set of invertible elements is open and the inversion mapping is continuous, we construct the smooth structures on the appropriate versions of flag manifolds. Then we prove that if such a locally convex algebra 𝒜 is endowed with a continuous involution, then it is a hermitian algebra if and only if the natural action of all unitary groups Un(𝒜) on each flag manifold is transitive.
We prove that two quiver operator algebras can be isometrically isomorphic only if the quivers (=directed graphs) are isomorphic. We also show how the graph can be recovered from certain representations of the algebra.
We investigate the invariant subspace structure of subalgebras of groupoid C*-algebras that are determined by automorphism groups implemented by cocycles on the groupoids. The invariant subspace structure is intimately tied to the asymptotic behavior of the cocycle.
We adapt the Toeplitz operator proof of Bott periodicity to give a short direct proof of Bott periodicity for the representable K-theory of σ-C*-algebras. We further show how the use of this proof and the right definitions simplifies the derivation of the basic properties of representable K-theory.
The bidual of a unital infrabarrelled l.m.c. C* algebra E, equipped with the bidual topology and the regualr Arens product, is always an l.m.c. C*-algebra. On the other hand, a unital l.m.c. *-algebra E has the C*-property if and only if every self-adjoint element x of E is strongly hermitian (x has real numerical range), or the sets of normalized states and normalized continuous positive linear forms of E coincide. Finally, every unital cpmplete l.m.c. C* algebra satisfying, locally, the property ‘the extreme points are dense in that set of continuous positive linear forms” (antiliminal algebra) has the complexes as its only normal elements.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.