To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
K. D. Magill has investigated the semigroup generated by the idempotent continuous mappings of a topological space into itself and examined whether this semigroup determines the space to within homeomorphism. By analogy with this (and related work of Bridget Bos Baird) we now consider the semigroup generated by nilpotent continuous partial mappings of a space into itself.
Let E be a Hausdorff topological vector space, let K be a nonempty compact convex subset of E and let f, g: K → 2E be upper semicontinuous such that for each x ∈ K, f(x) and g(x) are nonempty compact convex. Let Ω ⊂ 2E be convex and contain all sets of the form x − f(x), y − x + g(x) − f(x), for x, y ∈ K. Suppose p: K × Ω →, R satisfies: (i) for each (x, A) ∈ K × Ω and for ε > 0, there exist a neighborhood U of x in K and an open subset set G in E with A ⊂ G such that for all (y, B) ∈ K ×Ω with y ∈ U and B ⊂ G, | p(y, B) - p(x, A)| < ε, and (ii) for each fixed X ∈ K, p(x, ·) is a convex function on Ω. If p(x, x − f(x)) ≤ p(x, g(x) − f(x)) for all x ∈ K, and if, for each x ∈ K with f(x) ∩ g(x) = ø, there exists y ∈ K with p(x, y − x + g(x) − f(x)) < p(x, x − f(x)), then there exists an x0 ∈ K such that f(x0) ∩ g(x0) ≠ ø. Another coincidence theorem on a nonempty compact convex subset of a Hausdorff locally convex topological vector space is also given.
We present a systematic and self-contained exposition of the generalized Riemann integral in a locally compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals. We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with respect to a suitably chosen measure.
This paper studies topological upper and lower semicontinuity of the minimal value multifunction and the solution multifunction for optimization problems, which are defined in terms of cones, subject to perturbations in constraints. It extends the results of Tanino and Sawaragi to finite dimensions and one of Berge to multiple objective optimization problems.
In [8,9] Jayne and Rogers studied piece-wise closed maps and ℱσ maps between metric spaces. A map f of a metric space X into a metric space Y is said to be an ℱσ map if: (a) f maps ℱσ-sets in X to ℱσ-sets in Y; and (b) f1 maps ℱσ-sets in Y back to ℱσ-sets in X. A map fof a metric space X into a metric space Y is said to be piece-wise closed if:it is possible to find a sequence X1, X2,… of closed sets in X, with with each setf(Xi), i ≥ 1, closed in Y, and with the restriction offto each Xi, a closed map (i.e., a continuous map that maps closed sets to closed sets).
A space X is para-H-closed if every open cover of X has a locally-finite open refinement (not necessarily covering the space) whose union is dense in X. In this paper, we study one-point para-H-closed extensions of locally para-H-closed spaces.
This paper discusses several properties of topological spaces and how they are refelected by corresponding properties of the associated semi-regularization topologies. For example a space is almost locally connected if and only if its semi-regularization is locally connected. Various separation, connectedness, covering, and mapping properties are considered.
The central area of investigation is in the isolation of conditions on mappings which leave invariant the classes of locally finite-dimensional metric spaces and strongly countable-dimensional metric spaces. Examples of such properties are open and closed with discrete point-inverses, open and finite-to-one, or open, closed, and countable-to-one.
Using the exponential map in multifunction context, the paper deduces a system of non-Hausdorff theorems which generalize all known Ascoli theorems for the space of continuous functions and the space of point-compact continuous multifunctions.
In this paper it is shown that aimost local connectedness is hereditary for the subspace that is the union of regular open sets and is preserved under almost-open (in the sense of Singal) θ-continuous surjections.
In this note we give several new characterizations of arbitrary pseudocompact spaces, that is spaces characterized by the property that all continuous real-valued functions on the space are bounded.
It is shown that a Tychonoff space X is pseudocompact if and only if for every metrizable space Y, all uniformities on Y induce the same topology on the space of continuous functions from X into Y. Also for certain pairs of spaces X and Y, a necessary and sufficient condition is established in order that all uniformities on Y induce the same topology on the space of continuous functions from X into Y.
Biles has called a subring A of the ring C(X) a Wallman ring on X whenever Z(A), the zero sets of function belonging to A, forms a normal base on X in the sense of Frink (1964). In the following, we are concerned with the uniform topology of C(X). We formulate and prove some generalizations of the Stone–Weierstrass theorem in this setting.
Biles (1970) has called a subring A of the ring C(X), of all real valued continuous functions on a topological space X, a Wallman ring on X whenever Z(A), the zero sets of functions belonging to A, forms a normal base on X in the sense of Frink (1964). Previously, we have related algebraic properties of a Wallman ring A to topological properties of the Wallman compactification w(Z(A)) of X determined by the normal base Z(A). Here we introduce two different generalizations of the concept of “a C*-embedded subset” and study relationships between these and topological (respectively, algebraic) properties of w(Z(A)) (respectively, A).