We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe topological obstructions (involving periodic points, topological entropy and rotation sets) for a homeomorphism on a compact manifold to embed in a continuous flow. We prove that homeomorphisms in a $C^{0}$-open and dense set of homeomorphisms isotopic to the identity in compact manifolds of dimension at least two are not the time-1 map of a continuous flow. Such property is also true for volume-preserving homeomorphisms in compact manifolds of dimension at least five. In the case of conservative homeomorphisms of the torus $\mathbb {T}^{d} (d\ge 2)$ isotopic to identity, we describe necessary conditions for a homeomorphism to be flowable in terms of the rotation sets.
Urysohn’s lemma is a crucial property of normal spaces that deals with separation of closed sets by continuous functions. It is also a fundamental ingredient in proving the Tietze extension theorem, another property of normal spaces that deals with the existence of extensions of continuous functions. Using the Cantor function, we give alternative proofs for Urysohn’s lemma and the Tietze extension theorem.
Let $X,Y$ be two Hilbert spaces, let E be a subset of $X,$ and let $G\colon E \to Y$ be a Lipschitz mapping. A famous theorem of Kirszbraun’s states that there exists $\tilde {G} : X \to Y$ with $\tilde {G}=G$ on E and $ \operatorname {\mathrm {Lip}}(\tilde {G})= \operatorname {\mathrm {Lip}}(G).$ In this note we show that in fact the function $\tilde {G}:=\nabla _Y( \operatorname {\mathrm {conv}} (g))( \cdot , 0)$, where
defines such an extension. We apply this formula to get an extension result for strongly biLipschitz mappings. Related to the latter, we also consider extensions of $C^{1,1}$ strongly convex functions.
We study the locally compact abelian groups in the class
${\mathfrak E_{ \lt \infty }}$
, that is, having only continuous endomorphisms of finite topological entropy, and in its subclass
$\mathfrak E_0$
, that is, having all continuous endomorphisms with vanishing topological entropy. We discuss the reduction of the problem to the case of periodic locally compact abelian groups, and then to locally compact abelian p-groups. We show that locally compact abelian p-groups of finite rank belong to
${\mathfrak E_{ \lt \infty }}$
, and that those of them that belong to
$\mathfrak E_0$
are precisely the ones with discrete maximal divisible subgroup. Furthermore, the topological entropy of endomorphisms of locally compact abelian p-groups of finite rank coincides with the logarithm of their scale. The backbone of the paper is the Addition Theorem for continuous endomorphisms of locally compact abelian groups. Various versions of the Addition Theorem are established in the paper and used in the proofs of the main results, but its validity in the general case remains an open problem.
We study the following problem: For which Tychonoff spaces $X$ do the free topological group $F(X)$ and the free abelian topological group $A(X)$ admit a quotient homomorphism onto a separable and nontrivial (i.e., not finitely generated) group? The existence of the required quotient homomorphisms is established for several important classes of spaces $X$, which include the class of pseudocompact spaces, the class of locally compact spaces, the class of $\unicode[STIX]{x1D70E}$-compact spaces, the class of connected locally connected spaces, and some others.
We also show that there exists an infinite separable precompact topological abelian group $G$ such that every quotient of $G$ is either the one-point group or contains a dense non-separable subgroup and, hence, does not have a countable network.
We investigate the entropy for a class of upper semi-continuous set-valued functions, called Markov set-valued functions, that are a generalization of single-valued Markov interval functions. It is known that the entropy of a Markov interval function can be found by calculating the entropy of an associated shift of finite type. In this paper, we construct a similar shift of finite type for Markov set-valued functions and use this shift space to find upper and lower bounds on the entropy of the set-valued function.
In this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.
Let G be a simple, simply connected, compact Lie group, and let M be an orientable, smooth, connected, closed 4-manifold. In this paper, we calculate the homotopy type of the suspension of M and the homotopy types of the gauge groups of principal G-bundles over M when π1(M) is (1) ℤ*m, (2) ℤ/prℤ, or (3) ℤ*m*(*nj=1ℤ/prjjℤ), where p and the pj's are odd primes.
A generalised topology is a collection of subsets of a given nonempty set containing the empty set and arbitrary unions of the elements in the collection. By using the concept of hereditary classes, a generalised topology can be extended to a new one, called a generalised topology via a hereditary class. We study continuity on generalised topological spaces via hereditary classes in various situations.
In this paper we provide a unified approach, based on methods of descriptive set theory, for proving some classical selection theorems. Among them is the zero-dimensional Michael selection theorem, the Kuratowski–Ryll-Nardzewski selection theorem, as well as a known selection theorem for hyperspaces.
A function $f:X\rightarrow X$ determines a topology $P(f)$ on $X$ by taking the closed sets to be those sets $A\subseteq X$ with $f(A)\subseteq A$. The topological space $(X,P(f))$ is called a functionally Alexandroff space. We completely characterise the homogeneous functionally Alexandroff spaces.
We examine dynamical systems which are ‘nonchaotic’ on a big (in the sense of Lebesgue measure) set in each neighbourhood of a fixed point $x_{0}$, that is, the entropy of this system is zero on a set for which $x_{0}$ is a density point. Considerations connected with this family of functions are linked with functions attracting positive entropy at $x_{0}$, that is, each mapping sufficiently close to the function has positive entropy on each neighbourhood of $x_{0}$.
Let A = C(X) ⊗ K(H), where X is a compact Hausdorff space and K(H) is the algebra of compact operators on a separable infinite-dimensional Hilbert space. Let As be the algebra of strong*-continuous functions from X to K(H). Then As/A is the inner corona algebra of A. We show that if X has no isolated points, then As/A is an essential ideal of the corona algebra of A, and Prim(As/A), the primitive ideal space of As/A, is not weakly Lindelof. If X is also first countable, then there is a natural injection from the power set of X to the lattice of closed ideals of As/A. If X = βℕ\ℕ and the continuum hypothesis (CH) is assumed, then the corona algebra of A is a proper subalgebra of the multiplier algebra of As/A. Several of the results are obtained in the more general setting of C0(X)-algebras.
Metric regularity theory lies in the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. The paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.
De Bruijn's identity relates two important concepts in information theory: Fisher information and differential entropy. Unlike the common practice in the literature, in this paper we consider general additive non-Gaussian noise channels where more realistically, the input signal and additive noise are not independently distributed. It is shown that, for general dependent signal and noise, the first derivative of the differential entropy is directly related to the conditional mean estimate of the input. Then, by using Gaussian and Farlie–Gumbel–Morgenstern copulas, special versions of the result are given in the respective case of additive normally distributed noise. The previous result on independent Gaussian noise channels is included as a special case. Illustrative examples are also provided.
Finite subset spaces of a metric space $X$ form a nested sequence under natural isometric embeddings $X=X(1)\subset X(2)\subset \cdots \,$. We prove that this sequence admits Lipschitz retractions $X(n)\rightarrow X(n-1)$ when $X$ is a Hilbert space.
We prove that, for an interval X ⊆ ℝ and a normed space Z, diagonals of separately absolutely continuous mappings f : X2 → Z are exactly mappings g : X → Z, which are the sums of absolutely convergent series of continuous functions.
We explore the cardinality of generalised inverse limits. Among other things, we show that, for any $n\in \{ℵ_{0},c,1,2,3,\dots \}$, there is an upper semicontinuous function with the inverse limit having exactly $n$ points. We also prove that if $f$ is an upper semicontinuous function whose graph is a continuum, then the cardinality of the corresponding inverse limit is either 1, $ℵ_{0}$ or $c$. This generalises the recent result of I. Banič and J. Kennedy, which claims that the same is true in the case where the graph is an arc.
We describe how to compute the ideal class group and the unit group of an order in a number field in subexponential time. Our method relies on the generalized Riemann hypothesis and other usual heuristics concerning the smoothness of ideals. It applies to arbitrary classes of number fields, including those for which the degree goes to infinity.
Let $R\subset F$ be an extension of real closed fields, and let ${\mathcal{S}}(M,R)$ be the ring of (continuous) semialgebraic functions on a semialgebraic set $M\subset R^{n}$. We prove that every $R$-homomorphism ${\it\varphi}:{\mathcal{S}}(M,R)\rightarrow F$ is essentially the evaluation homomorphism at a certain point $p\in F^{n}$ adjacent to the extended semialgebraic set $M_{F}$. This type of result is commonly known in real algebra as a substitution lemma. In the case when $M$ is locally closed, the results are neat, while the non-locally closed case requires a more subtle approach and some constructions (weak continuous extension theorem, appropriate immersion of semialgebraic sets) that have interest of their own. We consider the same problem for the ring of bounded (continuous) semialgebraic functions, getting results of a different nature.