To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Fitting class (of finite, soluble, groups), , is said to be Hall π-closed (where π is a set of primes) if whenever G is a group in and H is a Hall π-subgroup of G, then H belongs to . In this paper, we study the Hall π-closure of products of Fitting classes. Our main result is a characterisation of the Hall π-closedFitting classes of the form (where denotes the so-called smallest normal Fitting class), subject to a restriction connecting π with the characteristic of . We also characterise those Fitting classes (respectively, ) such that (respectively, ) is Hall π-closed for all Fitting classes . In each case, part of the proof uses a concrete group construction. As a bonus, one of these construction also yields a “cancellation result” for certain products of Fitting classes.
Every irreducible ordinary character in a p-block of a finite metabelian group is of height 0 if and only if the defect group of the p-block is abelian.
A finite variety is a class of finite groups closed under taking subgroups, factor groups and finite direct products. To each such class there exists a sequence w1, w2,… of words such that the finite group G belongs to the class if and only if wk(G) = 1 for almost all k. As an illustration of the theory we shall present sequences of words for the finite variety of groups whose Sylow p-subgroups have class c for c = 1 and c = 2.
A group G is called semi-n-abelian, if for every g ∈ G there exists at least one a(g) ∈ G-which depends only on g-such that (gh)n = a-1(g)gnhna(g) for all h ∈ G; a group G is called n-abelian, if a(g) = e for all g ∈ G. According to Durbin the following holds for n-abelian groups: If G is n-abelian for at lesast 3 consecutive integers, then G in n-abelian for all integers and these groups are exactly the abelian groups. In this paper this problem is generalized to the semi-n-abelian case: If a finite group G is semi-n-abelian for at least 4 consecutive integers then G is semi-n-abelian for all integers and these groups are exactly the nilpotent groups, where the Sylow-2-subgroup is abelian, the Sylow-3-subgroup is any element of the Levi-variety ([[g, h], h] = e ∀ g, h ∈ G) and the Sylow-p-subgroup (p < 3) is of class <2. As a consequence we get a description of all finite (3-)groups, which are elements of the Levi-variety.
A short and easy proof that the minimum number of generators of the nth direct power of a non-trival finite group of order s having automorphism group of order a is more than logsn + logsa, n > 1. On the other hand, for non-abelian simple G and large n, d(Gn) is within 1 + e of logsn + logsa.
Reynolds (1972), using character-theory, showed that the p-section sums span an ideal of the centre Z(kG) of the group algebra of a finite group G over a field k of characteristic dividing the order of G. In O'Reilly (1973) a character-free proof was given. Here we extend these techniques to show the existence of a wider class of ideals of Z(kG).
A classical result of M. Zorn states that a finite group is nilpotent if and only if it satisfies an Engel condition. If this is the case, it satisfies almost all Engel conditions. We shall give a similar description of the class of p-soluble groups of p-length one by a sequence of commutator identities.
An example is given to show that a class of finite soluble groups that is both a Fitting class and a Schunck class need not be a formation. The novel feature of this class is that it is defined by imposing conditions on complemented chief factors of groups in it: this technique usually does not give rise to Fitting classes that are not formations.
It is shown that the simple groups G2(q), q = 3f, are characterized by their character table. This result completes characterization of the simple groups G2(q), q odd, by their character table.
Let Out (RG) be the set of all outer R-automorphisms of a group ring RG of arbitrary group G over a commutative ring R with 1. It is proved that there is a bijective correspondence between the set Out (RG) and a set consisting of R(G × G)-isomorphism classes of R-free R(G × G)-modules of a certain type. For the case when G is finite and R is the ring of algebraic integers of an algebraic number field the above result implies that there are only finitely many conjugacy classes of group bases in RG. A generalization of a result due to R. Sandling is also provided.
The main result is that d(Ssm) = n+2 for every finite non-abelian two-generator simple group S of order s and every integer n > 0. This is applied to give a very close estimate on d(Gn) for any finite group G whose simple images are two-generator. The article is based on the author's previous papers with similar titles.
Let k be an algebraically closed field of characteristic p, and G a finite group. Let M be an indecomposable kG-module with vertex V and source X, and let P be a Sylow p-subgroup of G containing V. Theorem: If dimkX is prime to p and if NG(V) is p-solvable, then the p-part of dimkM equals [P:V]; dimkX is prime to p if V is cyclic.
Let g be a connected reductive linear algebraic group, and let G = gσ be the finite subgroup of fixed points, where σ is the generalized Frobenius endomorphism of g. Let x be a regular semisimple element of G and let w be a corresponding element of the Weyl group W. In this paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out thta x fixes exactly as many cosets as does W in the corresponding permutation representation.
In conjunction with an earlier work by Leong (1974a), this paper completes the solution of the isomorphism problem for finite nilpotent groups of class two with cyclic centre. A canonical decomposition for 2-groups of such type is obtained and proved.
Let G be a finite group with d(G) = α, d(G/G′) = β≥1. If G has non-abelian simple images, let s denote the order of a smallest such image. Then d(Gn) = βn provided that βn≥α + 1 + log8n. If all simple images of G are abelian, then d(Gn) = βn provided that βn≥α. If G is non-trivial and perfect, with s again denoting the order of a smallest non-abelian simple image, then d(Gsn)≼d(G) + n for all n≥0. These results improve on results in previous papers with similar titles.
The product of two subsets C, D of a group is defined as . The power Ce is defined inductively by C0 = {1}, Ce = CCe−1 = Ce−1C. It is known that in the alternating group An, n > 4, there is a conjugacy class C such that CC covers An. On the other hand, there is a conjugacy class D such that not only DD≠An, but even De≠An for e<[n/2]. It may be conjectured that as n ← ∞, almost all classes C satisfy C3 = An. In this article, it is shown that as n ← ∞, almost all classes C satisfy C4 = An.
In this note I settle a question which arose out of my first paper under the above title (cf. [1]), where I considered the classgroup C(Z(Γ)) of the integral groupring Z(Γ) of a finite Abelian group Γ. This classgroup maps onto the classgroup C() of the maximal order of the rational groupring Q(Γ), and C() is the product of the ideal classgroups of the algebraic number fields which occur as components of Q(Γ) and is thus in a sense known. One is then interested in the kernel D(Z(Γ)) of C(Z(Γ)) → C() and in its order k(Γ). In [1] I proved that, for Γ a p-group, k(Γ) is a power of p. I also computed k(Γ) for small exponents. My computation used crucially the fact that, for the groups Γ considered, the groups of units of algebraic integers which occurred were finite, i.e. that the only number fields which turned up were Q and Q(n) with n4 = 1 or n6 = 1. The numerical results obtained led me to the question whether in fact k(Γ) tends to infinity with the order of Γ.