We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subgroup H of a finite G is said to be c-normal in G if there exists a normal subgroup N of G such that G = HN with H ∩ N ≤ HG = CoreG(H). We are interested in studying the influence of the c–normality of certain subgroups of prime power order on the structure of finite groups.
In this paper we describe the groups admitting a covering with Hall subgroups. We also determine the groups with a π1-Hall subgroup, where π1 is the connected component of the prime graph, containing the prime 2.
Let K be a field of prime characteristic p and let G be a finite group with a Sylow p-subgroup of order p. For any finite-dimensional K G-module V and any positive integer n, let Ln (V) denote the nth homogeneous component of the free Lie K-algebra generated by (a basis of) V. Then Ln(V) can be considered as a K G-module, called the nth Lie power of V. The main result of the paper is a formula which describes the module structure of Ln(V) up to isomorphism.
Let G be a finite p-solvable group for a fixed prime p. We study how certain arithmetical conditions on the set of p-regular conjugacy class sizes of G influence the p-structure of G. In particular, the structure of the p-complements of G is described when this set is {1, m, n} for arbitrary coprime integers m, n > 1. The structure of G is determined when the noncentral p-regular class lengths are consecutive numbers and when all of them are prime powers.
Let p be a prime, a field of pn elements, and G a finite p-group. It is shown here that if G has a quotient whose commutator subgroup is of order p and whose centre has index pk, then the group of normalized units in the group algebra has a conjugacy class of pnk elements. This was first proved by A. Bovdi and C. Polcino Milies for the case k = 2; their argument is now generalized and simplified. It remains an intriguing question whether the cardinality of the smallest noncentral conjugacy class can always be recognized from this test.
Given a lattice formation F of full characteristic, an F - Fitting class is a Fitting class with stronger closure properties involving F -subnormal subgroups. The main aim of this paper is to prove that the associated injectors possess a good behaviour with respect to F -subnormal subgroups.
In the present paper we consider Fitting classes of finite soluble groups which locally satisfy additional conditions related to the behaviour of their injectors. More precisely, we study Fitting classes 1 ≠⊆such that an-injector of G is, respectively, a normal, (sub)modular, normally embedded, system permutable subgroup of G for all G ∈.
Locally normal Fitting classes were studied before by various authors. Here we prove that some important results—already known for normality—are valid for all of the above mentioned embedding properties. For instance, all these embedding properties behave nicely with respect to the Lockett section. Further, for all of these properties the class of all finite soluble groups G such that an x-injector of G has the corresponding embedding property is not closed under forming normal products, and thus can fail to be a Fitting class.
A lattice formation is a class of groups whose elements are the direct product of Hall subgroups corresponding to pairwise disjoint sets of primes. In this paper Fitting classes with stronger closure properties involving F-subnormal subgroups, for a lattice formation F of full characteristic, are studied. For a subgroup-closed saturated formation G, a characterisation of the G-projectors of finite soluble groups is also obtained. It is inspired by the characterisation of the Carter subgroups as the N-projectors, N being the class of nilpotent groups.
Characterisations of finite groups in which normality is a transitive relation are presented in the paper. We also characterise the finite groups in which every subgroup is either permutable or coincides with its permutiser as the groups in which every subgroup is permutable.
This paper is concerned with the well-known and long-standing k(G V)-problem: If the finite group G acts faithfully and irreducibly on the finite GF(p)-module V and p does not divide the order of G, is the number k(GV) of conjugacy classes of the semidirect product GV bounded above by the order of V? Over the past two decades, through the work of numerous people, by using deep character theoretic arguments this question has been answered in the affirmative except for ρ = 5 for which it is still open. In this paper we suggest a new approach to the k(G V)-problem which is independent of most of the previous work on the problem and which is mainly group theoretical. To demonstrate the potential of the new line of attack we use it to solve the k(G V)-problem for solvable G and large ρ.
Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set XCn and the multiplicities of indecomposable summands of M considered as a kCn-module are related via a localization theorem in equivariant cohomology, where Cn is a cyclic subgroup of G of order n. Explicit formulas are given for n = 2 and n = 4.
Davey and Quackenbush proved a strong duality for each dihedral group Dm with m odd. In this paper we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are known to be metacyclic).
A close connection is uncovered between the lower central series of the free associative algebra of countable rank and the descending Loewy series of the direct sum of all Solomon descent algebras Δn, n ∈ ℕ0. Each irreducible Δn-module is shown to occur in at most one Loewy section of any principal indecomposable Δn-module.A precise condition for his occurence and formulae for the Cartan numbers are obtained.
It is shown that no finite group containing a non-abelian nilpotent subgroup is dualizable. This is in contrast to the known result that every finite abelian group is dualizable (as part of the Pontryagin duality for all abelian groups) and to the result of the authors in a companion article that every finite group with cyclic Sylow subgroups is dualizable.
Let G be a finite group that acts on a finite group V, and let p be a prime that does not divide the order of V. Then the p-parts of the orbit sizes are the same in the actions of G on the sets of conjugacy classes and irreducible characters of V. This result is derived as a consequence of some general theory relating orbits and chains of p-subgroups of a group.
Let V be an infinite-dimensional vector space ovre a field of characteristic 0. It is well known that the tensor algebra T on V is a completely reducible module for the general linear group G on V. This paper is concerned with those quotient algebras A of T that are at the same time modules for G. A partial solution is given to the problem of determinig those A in which no irreducible constitutent has multiplicity greater thatn 1.
Let K be a field of characteristic p. The permutation modules associated to partitions of n, usually denoted as Mλ, play a central role not only for symmetric groups but also for general linear groups, via Schur algebras. The indecomposable direct summands of these Mλ were parametrized by James; they are now known as Young modules; and Klyachko and Grabmeier developed a ‘Green correspondence’ for Young modules. The original parametrization used Schur algebras; and James remarked that he did not know a proof using only the representation theory of symmetric groups. We will give such proof, and we will at the same time also prove the correspondence result, by using only the Brauer construction, which is valid for arbitrary finite groups.
Let G be a finite group of order pk, where p is a prime and k ≥ 1, such that G is either cyclic, quaternion or generalised quaternion. Let V be a finite-dimensional free KG-module where K is a field of characteristic p. The Lie powers Ln(V) are naturally KG-modules and the main result identifies these modules up to isomorphism. There are only two isomorphism types of indecomposables occurring as direct summands of these modules, namely the regular KG-module and the indecomposable of dimension pk – pk−1 induced from the indecomposable K H-module of dimension p − 1, where H is the unique subgroup of G of order p. Formulae are given for the multiplicities of these indecomposables in Ln(V). This extends and utilises work of the first author and R. Stöhr concerned with the case where G has order p.
A cover for a group is a finite set of subgroups whose union is the whole group. A cover is minimal if its cardinality is minimal. Minimal covers of finite soluble groups are categorised; in particular all but at most one of their members are maximal subgroups. A characterisation is given of groups with minimal covers consisting of abelian subgroups.