We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A group G satisfies the second Engel condition [X,Y,Y ]=1 if and only if x commutes with xy, for all x,y∈G. This paper considers the generalization of this condition to groups G such that, for fixed positive integers r and s, xr commutes with (xs)y for all x,y∈G. Various general bounds are proved for the structure of groups in the corresponding variety, defined by the law [Xr,(Xs)Y]=1.
In this paper we determine the group of endotrivial modules for certain symmetric and alternating groups in characteristic p. If p = 2, then the group is generated by the class of Ωn(k) except in a few low degrees. If p > 2, then the group is only determined for degrees less than p2. In these cases we show that there are several Young modules which are endotrivial.
We analyse Hecke pairs (G,H) and the associated Hecke algebra when G is a semi-direct product N ⋊ Q and H = M ⋊ R for subgroups M ⊂ N and R ⊂ Q with M normal in N. Our main result shows that, when (G,H) coincides with its Schlichting completion and R is normal in Q, the closure of in C*(G) is Morita–Rieffel equivalent to a crossed product I⋊βQ/R, where I is a certain ideal in the fixed-point algebra C*(N)R. Several concrete examples are given illustrating and applying our techniques, including some involving subgroups of GL(2,K) acting on K2, where K = ℚ or K = ℤ[p−1]. In particular we look at the ax + b group of a quadratic extension of K.
A complete Sylow sequence, 𝒫=P1,…,Pm, of a finite group G is a sequence of m Sylow pi-subgroups of G, one for each pi, where p1,…,pm are all of the distinct prime divisors of |G|. A product of the form P1⋯Pm is called a complete Sylow product of G. We prove that the solvable radical of G equals the intersection of all complete Sylow products of G if, for every composition factor S of G, and for every ordering of the prime divisors of |S|, there exist a complete Sylow sequence 𝒫 of S, and g∈S such that g is uniquely factorizable in 𝒫 . This generalizes our results in Kaplan and Levy [‘The solvable radical of Sylow factorizable groups’, Arch. Math.85(6) (2005), 490–496].
A cover of a group is a finite collection of proper subgroups whose union is the whole group. A cover is minimal if no cover of the group has fewer members. It is conjectured that a group with a minimal cover of nilpotent subgroups is soluble. It is shown that a minimal counterexample to this conjecture is almost simple and that none of a range of almost simple groups are counterexamples to the conjecture.
We make several conjectures, and prove some results, pertaining to conjugacy classes of a given size in finite groups, especially in p-groups and 2-groups.
Let G be isomorphic to a group H satisfying SL(d,q)≤H≤GL(d,q) and let W be an irreducible FqG-module of dimension at most d2. We present a Las Vegas polynomial-time algorithm which takes as input W and constructs a d-dimensional projective representation of G.
Let α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences between conditions on chief factors of G and structural characterizations of the α-residual and theα-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.
Let G bea p-group of maximal class of order pn. It isshown that the order of the group of all automorphisms of G centralizing the Frattini quotient takes the maximum value p2n−4 if and only if G is metabelian. A structure theorem is proved for the Sylow p-subgroup, Autp(G), of the automorphism group of G when G is metabelian. For p=2, Aut2(G) is the full automorphism group of G. For p=3, we prove a structure theorem for the full automorphism group of G.
We give a formula for the character of the representation of the symmetric group Sn on each isotypic component of the cohomology of the set of regular elements of a maximal torus of SLn, with respect to the action of the centre.
Let G be a finite group, K a field, and V a finite-dimensional K G-module. Write L(V) for the free Lie algebra on V; similarly, let M ( V) be the free metabelian Lie algebra. The action of G extends naturally to these algebras, so they become KG-modules, which are direct sums of finite-dimensional submodules. This paper explores whether indecomposable direct summands of such a KG-module (for some specific choices of G, K and V) must fall into finitely many isomorphism classes. Of course this is not a question unless there exist infinitely many isomorphism classes of indecomposable KG-modules (that is, K has positive characteristic p and the Sylow p-subgroups of G are non-cyclic) and dim V > 1.
The first two results show that the answer is positive for M(V) when K is finite and dim V = 2, but negative when G is the Klein four-group, the characteristic of K is 2, and V is the unique 3-dimnsional submodule of the regular module D. In the third result, G is again the Klein four-group, K is any field of charateristic 2 with more than 2 elements, V is any faithfull module of dimension 2, and B is the unique 3-dimensional quotient of D; the answer is positive for L(V) if and only if it is positive for each of L(B), L(D), and L(V ⊗ V).
In this paper we investigate non-central elements of the Iwahori-Hecke algebra of the symmetric group whose squares are central. In particular, we describe a commutative subalgebra generated by certain non-central square roots of central elements, and the generic existence of a rank-three submodule of the Hecke algebra contained in the square root of the centre, but not in the centre. The generators for this commutative subalgebra include the longest word and elements related to trivial and sign characters of the Hecke algebra. We find elegant expressions for the squares of such generators in terms of both the minimal basis of the centre and the elementary symmetric functions of Murphy elements.
Let G be a finite p-group, and let M(G) be the subgroup generated by the non-central conjugacy classes of G of minimal size. We prove that this subgroup has class at most 3. A similar result is noted for nilpotent Lie algebras.
In this article, a Blackburn group refers to a finite non-Dedekind group for which the intersection of all nonnormal subgroups is not the trivial subgroup. By completing the arguments of M. Hertweck, we show that all conjugacy class preserving automorphisms of Blackburn groups are inner automorphisms.
Let F be a field of characteristic p and G a group containing at least one element of order p. It is proved that the group of units of the group algebra FG is a bounded Engel group if and only if FG is a bounded Engel algebra, and that this is the case if and only if G is nilpotent and has a normal subgroup H such that both the factor group G/H and the commutator subgroup H′ are finite p–groups.
Hypercentrally embedded subgroups of finite groups can be characterized in terms of permutability as those subgroups which permute with all pronormal subgroups of the group. Despite that, in general, hypercentrally embedded subgroups do not permute with the intersection of pronormal subgroups, in this paper we prove that they permute with certain relevant types of subgroups which can be described as intersections of pronormal subgroups. We prove that hypercentrally embedded subgroups permute with subgroups of prefrattini type, which are intersections of maximal subgroups, and with F-normalizers, for a saturated formation F. In the soluble universe, F-normalizers can be described as intersection of some pronormal subgroups of the group.
Suppose that the finite group G acts faithfully and irreducibly on the finite G-module V of characteristic p not dividing |G|. The well-known k(GV)-problem states that in this situation, if k(G V) is the number of conjugacy classes of the semidirect product GV, then k(GV) ≤ |V|. For p—solvable groups, this is equivalent to Brauer's famous k(B)-problem. In 1996, Robinson and Thompson proved the k(GV) problem for large p. This ultimately led to a complete proof of the k(GV)-problem. In this paper, we present a new proof of the k(G V)-problem for large p.
A subgroup H of a finite group G is said to be c–supplemented in G if there exists a subgroup K of G such that G = HK and H∩K is contained in coreG (H). In this paper some results for finite p–nilpotent groups are given based on some subgroups of Pc–supplemented in G, where p is a prime factor of the order of G and P is a Sylow p–subgroup of G. We also give some applications of these results.