To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we show that, in the stable case, when m≥2n−1, the cohomology ring H*(Repn(m)B) of the representation variety with Borel mold Repn(m)B and are isomorphic as algebras. Here the degree of si is 2m−3 when 1≤i<n. In the unstable cases, when m≤2n−2, we also calculate the cohomology group H*(Repn(m)B) when n=3,4 . In the most exotic case, when m=2 , Rep n (2)B is homotopy equivalent to Fn (ℂ2)×PGL n (ℂ) , where Fn (ℂ2)is the configuration space of n distinct points in ℂ2. We regard Rep n (2)B as a scheme over ℤ, and show that the Picard group Pic (Rep n (2)B)of Rep n (2)B is isomorphic to ℤ/nℤ. We give an explicit generator of the Picard group.
We describe a method for constructing the character table of a group of type M.G.A from the character tables of the subgroup M.G and the factor group G.A, provided that A acts suitably on M.G. This simplifies and generalizes a recently published method.
Fix a prime number p. Let G be a p-modular Frobenius group with kernel N which is the minimal normal subgroup of G. We give the complete classification of G when N has three, four or five p-regular conjugacy classes. We also determine the structure of G when N has more than five p-regular conjugacy classes.
A group G is said to be a B(n,k) group if for any n-element subset A of G, ∣A2∣≤k. In this paper, characterizations of B(5,16) groups and B(5,17) groups are given.
The level l Fock space admits canonical bases and . They correspond to and -module structures. We establish that the transition matrices relating these two bases are unitriangular with coefficients in ℕ[v]. Restriction to the highest-weight modules generated by the empty l-partition then gives a natural quantization of a theorem by Geck and Rouquier on the factorization of decomposition matrices which are associated to Ariki–Koike algebras.
Let G be a group of odd order that contains a non-central element x whose order is either a prime p ≥ 5 or 3l, with l ≥ 2. Then, in , the group of units of ℤG, we can find an alternating unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that for all sufficiently large integers m we have that 〈um, vm〉 = 〈um〉 ∗ 〈vm〉 ≌ ℤ ∗ ℤ
Gaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by generators of the Kohno–Drinfeld Lie algebra . We show that Gaudin subalgebras form a variety isomorphic to the moduli space of stable curves of genus zero with n+1 marked points. In particular, this gives an embedding of in a Grassmannian of (n−1)-planes in an n(n−1)/2-dimensional space. We show that the sheaf of Gaudin subalgebras over is isomorphic to a sheaf of twisted first-order differential operators. For each representation of the Kohno–Drinfeld Lie algebra with fixed central character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic subscheme of a twisted version of the logarithmic cotangent bundle of .
We investigate the functors from modules to modules that occur as the summands of tensor powers and the functors from modules to Hopf algebras that occur as natural coalgebra summands of tensor algebras. The main results provide some explicit natural coalgebra summands of tensor algebras. As a consequence, we obtain some decompositions of Lie powers over the general linear groups.
Let G be a group. A subset X of G is said to be nonnilpotent if for any two distinct elements x and y in X, 〈x,y〉 is a nonnilpotent subgroup of G. If, for any other nonnilpotent subset X′ in G, ∣X∣≥∣X′ ∣, then X is said to be a maximal nonnilpotent subset and the cardinality of this subset is denoted by ω(𝒩G) . Using nilpotent nilpotentizers we find a lower bound for the cardinality of a maximal nonnilpotent subset of a finite group and apply this to the general linear group GL (n,q) . For all prime powers q we determine the cardinality of a maximal nonnilpotent subset of the projective special linear group PSL (2,q) , and we characterize all nonabelian finite simple groups G with ω(𝒩G)≤57 .
Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have with equality if and only if if is an integer, and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller.
Two subgroups A and B of a group G are said to be totally completely conditionally permutable (tcc-permutable) in G if X permutes with Yg for some g ∊ 〈X, Y〉, for all X ≤ A and Y ≤ B. We study the belonging of a finite product of tcc-permutable subgroups to a saturated formation of soluble groups containing all finite supersoluble groups.
We describe a practical algorithm for primitivity testing of finite nilpotent linear groups over various fields of characteristic zero, including number fields and rational function fields over number fields. For an imprimitive group, a system of imprimitivity can be constructed. An implementation of the algorithm in Magma is publicly available.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let 𝔤 be its Lie algebra. Let k(G), respectively, k(𝔤), be the field of k-rational functions on G, respectively, 𝔤. The conjugation action of G on itself induces the adjoint action of G on 𝔤. We investigate the question whether or not the field extensions k(G)/k(G)G and k(𝔤)/k(𝔤)G are purely transcendental. We show that the answer is the same for k(G)/k(G)G and k(𝔤)/k(𝔤)G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type An or Cn, and negative for groups of other types, except possibly G2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let A be a finite group acting fixed-point freely on a finite (solvable) group G. A longstanding conjecture is that if (|G|, |A|) = 1, then the Fitting length of G is bounded by the length of the longest chain of subgroups of A. It is expected that the conjecture is true when the coprimeness condition is replaced by the assumption that A is nilpotent. We establish the conjecture without the coprimeness condition in the case where A is an abelian group whose order is a product of three odd primes and where the Sylow 2-subgroups of G are abelian.
In this paper, we classify the finite groups belonging to the class of cyclic-transitive groups. A group G is said to be cyclic-transitive if the following condition holds: if x, y, z are nonidentity elements of G such that 〈x,y〉 and 〈y,z〉 are both cyclic, then 〈x,z〉 is also cyclic.
Let R be an integral domain and A a symmetric cellular algebra over R with a cellular basis {CλS,T∣λ∈Λ,S,T∈M(λ)}. We construct an ideal L(A) of the centre of A and prove that L(A) contains the so-called Higman ideal. When R is a field, we prove that the dimension of L(A)is not less than the number of nonisomorphic simple A-modules.
Suppose that p is 3,5,7,11 or 13. We classify the radical p-chains of the Monster 𝕄 and verify the Alperin weight conjecture and Uno’s reductive conjecture for 𝕄, the latter being a refinement of Dade’s reductive conjecture and the Isaacs–Navarro conjecture.
Suppose that G is a connected reductive group over a p-adic field F, that K is a hyperspecial maximal compact subgroup of G(F), and that V is an irreducible representation of K over the algebraic closure of the residue field of F. We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported,K-biequivariant functions f:G(F)→End V. These Hecke algebras were first considered by Barthel and Livné for GL 2. They play a role in the recent mod p andp-adic Langlands correspondences for GL 2 (ℚp) , in generalisations of Serre’s conjecture on the modularity of mod p Galois representations, and in the classification of irreducible mod p representations of unramified p-adic reductive groups.
Let G be a finite group. If G has a cyclic Sylow 2-subgroup, then G has the same number of irreducible rational-valued characters as of rational conjugacy classes. These numbers need not be the same even if G has Klein Sylow 2-subgroups and a normal 2-complement.