To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite group, α be a fixed cocycle of G and Proj (G, α) denote the set of irreducible projective characters of G lying over the cocycle α.
Suppose N is a normal subgroup of G. Then the author shows that there exists a G- invariant element of Proj(N, αN) of degree 1 if and only if [α] is an element of the image of the inflation homomorphism from M(G/N) into M(G), where M(G) denotes the Schur multiplier of G. However in many situations one can produce such G-invariant characters where it is not intrinsically obvious that the cocycle could be inflated. Because of this the author obtains a restatement of his original result using the Lyndon-Hochschild-Serre exact sequence of cohomology. This restatement not only resolves the apparent anomalies, but also yields as a corollary the well-known fact that the inflation-restriction sequence is exact when N is perfect.
In this paper we show that a group A is embedded in any finite group G as a subnormal subgroup with low degree of complication, provided that the automorphism group of A satisfies a condition depending on some Fitting class (which coincides with completeness for the Fitting class of all groups). A criterion is given for these groups as to whether they can be embedded subnormally in the commutator subgroup of some finite group or not.
We give new presentations of the five Mathieu groups, the simple groups J1, J2, HS, McL, Co3, and some other simple and related groups. All generators in these presentations are involutions. Our presentations are simpler than the known presentations of this type for the groups mentioned above.
We study the embeddings of a finite p-group U into Sylow p-subgroups of Sym (U) induced by the right regular representation p: U→ Sym(U). It turns out that there is a one-to-one correspondence between the chief series in U and the Sylow p-subgroups of Sym (U) containing Up. Here, the Sylow p-subgroup Pσ of Sym (U) correspoding to the chief series σ in U is characterized by the property that the intersections of Up with the terms of any chief series in Pσ form σp. Moreover, we see that p: U→ Pσ are precisely the kinds of embeddings used in a previous paper to construct the non-trivial countable algebraically closed locally finite p-groups as direct limits of finite p-groups.
We determine all conjugacy classes of maximal local subgroups of Thompson's sporadic simple group, and all maximal non-local subgroups except those with socle isomorphic to one of five particular small simple groups.
A group G is called normally (subnormally) detectable if the only normal (subnormal) subgroups in any direct product G1 × … × Gn of copies of G are just the direct factors Gi. We give an internal characterization of finite subnormally detectable groups and obtain analogous results for associative rings and for Lie algebras. The main part of the paper deals with a study of normally detectable groups, where we verify a conjecture of T. O. Hawkes in a number of special cases.
In this paper the question is considered of when the wreath product of a nilpotent group with a CLT group G is a CLT group. It is shown that if the field with Pr elements is a splitting field of a Hall P1–subgroup of G, then P wr G is a CLT group for all p–groups P with |P/P1|≥ pr. Moreover, the class of all groups G having the property that N wr G is a CLT group for every nilpotent group N is shown to be quite large. For exmple, every group of odd order can be embedded as a subgroup of a group belonging to this class.
A technique is described for calculating the number of block ideals of FG, where F is a algebraically closed field of characteristic p, and where G is a p-soluble finite group. Among its consequences are the following: if U is a G-invariant irreducible FOp′(G)-module, then there is a unique block ideal of FG whose restriction to Op′(G) has all its composition factors isomorphic to U; and if G has p′-length 1, the number of block ideals of FG is the number of G-conjugacy classes of Op′(G)
An infinite family of 2-groups is produced. These groups have no direct factors and have a non-abelian automorphism group in which all automorphisms are central.
Let G be a p–group with cyclic L(G) = Z. Then L(G) = {Z < H ≦ G|H′ ∩ Z = (1)}, a poset ordered under inclusion. Then the associated simplicial complex |L(G)| is homotopic to a bouquet of spheres. A subgroup E of G is called a CES if CG (E) = Z = L(E) and if E/Z is elementary. Then |L(G)| is homotopic to the one-point union of the |L(E)| for all CES's E in G. If |E/Z| = p2n then |L(E)| is homotopic to a one-point union of pn2 (n– 1)-spheres.
In this paper periodic modules over group rings and algebras are considered. A new lower bound for the p-part of the rank of a periodic module with abeian vertex is given, and results on periodic modules with odd/even and small periods are obtained. In particular, it is shown that characters afforded by periodic lattices of odd period satisfy strong properties and that irreducible periodic lattices are always of even period.
Gaschütz has introduced the concept of a product of a Schunck class and a (saturated) formation (differing from the usual product of classes) and has shown that this product is a Schunck class provided that both of its factors consist of finite soluble groups. We investigate the same question in the context of arbitrary finite groups.
We define and investigate H-prefrattini subgroups for Schunck classes H of finite soluble groups, and solve a problem of Gaschütz concerning the structure of H-prefrattini groups for H = {1}.
In this note a formation U is considered which can be defined by a sequence of laws which ‘almost’ hold in every finite supersoluble group. The class U contains all finite supersoluble groups and each group in U has a Sylow tower.
It is shown that a finite group belongs to U if and only if all of its subgroups with nilpotent commutator subgroup are supersoluble. A more general result concerning classes of this type finally proves that U is a saturated formation.
Suppose the elementary abelian group A acts on the group G where A and G have relatively prime orders. If CG(a) belongs to some formation F for all non-identity elements a in A, does it follow that G belongs to F? For many formations, the answer is shown to be yes provided that the rank of A is sufficiently large.