We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the existence and regularity of minimizers of the neo-Hookean energy in the closure of classes of deformations without cavitation. The exclusion of cavitation is imposed in the form of the divergence identities, which is equivalent to the well-known condition (INV) with $\operatorname{Det} = \operatorname{det}$. We show that the neo-Hookean energy admits minimizers in classes of maps that are one-to-one a.e. with positive Jacobians, provided that these maps are the weak limits of sequences of maps that satisfy the divergence identities. In particular, these classes include the weak closure of diffeomorphisms and the weak closure of homeomorphisms satisfying Lusin’s condition N. Moreover, if the minimizers satisfy condition (INV), then their inverses have Sobolev regularity. This extends a recent result by Doležalová, Hencl, and Molchanova by showing that the minimizers they obtained enjoy extra regularity properties and that the existence of minimizers can still be obtained even when their coercivity assumption is relaxed.
We derive a global higher regularity result for weak solutions of the linear relaxed micromorphic model on smooth domains. The governing equations consist of a linear elliptic system of partial differential equations that is coupled with a system of Maxwell-type. The result is obtained by combining a Helmholtz decomposition argument with regularity results for linear elliptic systems and the classical embedding of $H(\operatorname {div};\Omega )\cap H_0(\operatorname {curl};\Omega )$ into $H^1(\Omega )$.
We provide a fine description of the weak limit of sequences of regular axisymmetric maps with equibounded neo-Hookean energy, under the assumption that they have finite surface energy. We prove that these weak limits have a dipole structure, showing that the singular map described by Conti and De Lellis is generic in some sense. On this map, we provide the explicit relaxation of the neo-Hookean energy. We also make a link with Cartesian currents showing that the candidate for the relaxation we obtained presents strong similarities with the relaxed energy in the context of $\mathbb {S}^2$-valued harmonic maps.
Understanding the generation of mechanical stress in drying, particle-laden films is important for a wide range of industrial processes. One way to study these stresses is through the cantilever experiment, whereby a thin film is deposited onto the surface of a thin plate that is clamped at one end to a wall. The stresses that are generated in the film during drying are transmitted to the plate and drive bending. Mathematical modelling enables the film stress to be inferred from measurements of the plate deflection. The aim of this paper is to present simplified models of the cantilever experiment that have been derived from the time-dependent equations of continuum mechanics using asymptotic methods. The film is described using nonlinear poroelasticity and the plate using nonlinear elasticity. In contrast to Stoney-like formulae, the simplified models account for films with non-uniform thickness and stress. The film model reduces to a single differential equation that can be solved independently of the plate equations. The plate model reduces to an extended form of the Föppl-von Kármán (FvK) equations that accounts for gradients in the longitudinal traction acting on the plate surface. Consistent boundary conditions for the FvK equations are derived by resolving the Saint-Venant boundary layers at the free edges of the plate. The asymptotically reduced models are in excellent agreement with finite element solutions of the full governing equations. As the Péclet number increases, the time evolution of the plate deflection changes from $t$ to $t^{1/2}$, in agreement with experiments.
Motivated by some models of pattern formation involving an unoriented director field in the plane, we study a family of unoriented counterparts to the Aviles–Giga functional. We introduce a nonlinear $\operatorname {\mathrm {curl}}$ operator for such unoriented vector fields as well as a family of even entropies which we call ‘trigonometric entropies’. Using these tools, we show two main theorems which parallel some results in the literature on the classical Aviles–Giga energy. The first is a compactness result for sequences of configurations with uniformly bounded energies. The second is a complete characterization of zero-states, that is, the limit configurations when the energies go to 0. These are Lipschitz continuous away from a locally finite set of points, near which they form either a vortex pattern or a disclination with degree 1/2. The proof is based on a combination of regularity theory together with techniques coming from the study of the Ginzburg–Landau energy. Our methods provide alternative proofs in the classical Aviles–Giga context.
We study the $\Gamma$-convergence of nonconvex vectorial integral functionals whose integrands satisfy possibly degenerate growth and coercivity conditions. The latter involve suitable scale-dependent weight functions. We prove that under appropriate uniform integrability conditions on the weight functions, which shall belong to a Muckenhoupt class, the corresponding functionals $\Gamma$-converge, up to subsequences, to a degenerate integral functional defined on a limit weighted Sobolev space. The general analysis is then applied to the case of random stationary integrands and weights to prove a stochastic homogenization result for the corresponding functionals.
We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness, also known as the bending rigidity, depends on an additional density variable. The underlying variational model relies on the minimisation of a bending energy with respect to shape and density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the problem, we introduce an additional length scale in the model by means of a density gradient term. We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results are presented.
In this work we derive by $\Gamma$-convergence techniques a model for brittle fracture linearly elastic plates. Precisely, we start from a brittle linearly elastic thin film with positive thickness $\rho$ and study the limit as $\rho$ tends to $0$. The analysis is performed with no a priori restrictions on the admissible displacements and on the geometry of the fracture set. The limit model is characterized by a Kirchhoff-Love type of structure.
Motivated by the manufacture of carbon fibre components, this paper considers the smooth draping of loosely woven fabric over rigid obstacles, both smooth and nonsmooth. The draped fabric is modelled as the continuum limit of a Chebyshev net of two families of short rigid rods that are freely pivoted at their joints. This approach results in a system of nonlinear hyperbolic partial differential equations whose characteristics are the fibres in the fabric. The analysis of this system gives useful information about the drapability of obstacles of many shapes and also poses interesting theoretical questions concerning well-posedness, smoothness and computability of the solutions.
The aim of the paper is to introduce and investigate a dynamical system which consists of a variational–hemivariational inequality of hyperbolic type combined with a non-linear evolution equation. Such a dynamical system arises in studies of complicated contact problems in mechanics. Existence, uniqueness and regularity of a global solution to the system are established. The approach is based on a new semi-discrete approximation with an application of a surjectivity result for a pseudomonotone perturbation of a maximal monotone operator. A new dynamic viscoelastic frictional contact model with adhesion is studied as an application, in which the contact boundary condition is described by a generalised normal damped response condition with unilateral constraint and a multivalued frictional contact law.
This paper deals with the analysis of the singularities arising from the solutions of the problem ${-}\,{\rm Curl\ } F=\mu $, where F is a 3 × 3 matrix-valued Lp-function ($1\les p<2$) and μ a 3 × 3 matrix-valued Radon measure concentrated in a closed loop in Ω ⊂ ℝ3, or in a network of such loops (as, for instance, dislocation clusters as observed in single crystals). In particular, we study the topological nature of such dislocation singularities. It is shown that $F=\nabla u$, the absolutely continuous part of the distributional gradient Du of a vector-valued function u of special bounded variation. Furthermore, u can also be seen as a multi-valued field, that is, can be redefined with values in the three-dimensional flat torus 𝕋3 and hence is Sobolev-regular away from the singular loops. We then analyse the graphs of such maps represented as currents in Ω × 𝕋3 and show that their boundaries can be written in term of the measure μ. Readapting some well-known results for Cartesian currents, we recover closure and compactness properties of the class of maps with bounded curl concentrated on dislocation networks. In the spirit of previous work, we finally give some examples of variational problems where such results provide existence of solutions.
We prove that, in the limit of vanishing thickness, equilibrium configurations of inhomogeneous, three-dimensional non-linearly elastic rods converge to equilibrium configurations of the variational limit theory. More precisely, we show that, as $h\searrow 0$, stationary points of the energy , for a rod $\Omega _h\subset {\open R}^3$ with cross-sectional diameter h, subconverge to stationary points of the Γ-limit of , provided that the bending energy of the sequence scales appropriately. This generalizes earlier results for homogeneous materials to the case of materials with (not necessarily periodic) inhomogeneities.
In this paper we study constrained variational problems that are principally motivated by nonlinear elasticity theory. We examine, in particular, the relationship between the positivity of the Jacobian det ∇u and the uniqueness and regularity of energy minimizers u that are either twist maps or shear maps. We exhibit explicit twist maps, defined on two-dimensional annuli, that are stationary points of an appropriate energy functional and whose Jacobian vanishes on a set of positive measure in the annulus. Within the class of shear maps we precisely characterize the unique global energy minimizer $u_{\sigma }: \Omega \to {\open R}^2$ in a model, two-dimensional case. We exploit the Jacobian constraint $\det \nabla u_{\sigma} \gt 0$ a.e. to obtain regularity results that apply ‘up to the boundary’ of domains with corners. It is shown that the unique shear map minimizer has the properties that (i) $\det \nabla u_{\sigma }$ is strictly positive on one part of the domain Ω, (ii) $\det \nabla u_{\sigma } = 0$ necessarily holds on the rest of Ω, and (iii) properties (i) and (ii) combine to ensure that $\nabla u_{\sigma }$ is not continuous on the whole domain.
We consider a class of history-dependent quasivariational inequalities for which we prove the continuous dependence of the solution with respect to the set of constraints. Then, under additional assumptions, we associate with each inequality in the class a new inequality, the so-called dual variational inequality, for which we state and prove existence, uniqueness, equivalence and convergence results. The proofs are based on various estimates, monotonicity and fixed-point arguments for history-dependent operators. Our abstract results are useful in the study of various mathematical models of contact. To provide an example, we consider a boundary value problem which describes the equilibrium of a viscoelastic body in contact with an elastic-rigid foundation. We list the assumptions on the data and derive both the primal and the dual variational formulation of the problem. Then, we state and prove existence, uniqueness and convergence results. We also provide the link between the two formulations, together with their mechanical interpretation.
We propose a multi-layer approach to simulate hyperpycnal and hypopycnal plumes in flows with free surface. The model allows to compute the vertical profile of the horizontal and the vertical components of the velocity of the fluid flow. The model can describe as well the vertical profile of the sediment concentration and the velocity components of each one of the sediment species that form the turbidity current. To do so, it takes into account the settling velocity of the particles and their interaction with the fluid. This allows to better describe the phenomena than a single layer approach. It is in better agreement with the physics of the problem and gives promising results. The numerical simulation is carried out by rewriting the multilayer approach in a compact formulation, which corresponds to a system with nonconservative products, and using path-conservative numerical scheme. Numerical results are presented in order to show the potential of the model.
We show that, in the two-dimensional case, every objective, isotropic and isochoric energy function that is rank-one convex on GL+(2) is already polyconvex on GL+(2). Thus, we answer in the negative Morrey's conjecture in the subclass of isochoric nonlinear energies, since polyconvexity implies quasi-convexity. Our methods are based on different representation formulae for objective and isotropic functions in general, as well as for isochoric functions in particular. We also state criteria for these convexity conditions in terms of the deviatoric part of the logarithmic strain tensor.
In the present work concentrated on the two-dimensional problem of generalized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress. Using generalized thermoelasticity theory with fractional order heat conduction, the problem has been solved by a normal mode analysis. The effect of hydrostatic initial stresses and fractional order parameter is shown graphically on the distributions of the temperature, displacement and thermal stress components. It is found from the graphs that the initial stress and the fractional parameter significantly influences the varieties of field amounts.
In this work, we introduce a mathematical model for the theory of generalized thermoelasticity with fractional heat conduction equation. The presented model will be applied to an infinitely long hollow cylinder whose inner surface is traction free and subjected to a thermal and mechanical shocks, while the external surface is traction free and subjected to a constant heat flux. Some theories of thermoelasticity can extracted as limited cases from our model. Laplace transform methods are utilized to solve the problem and the inverse of the Laplace transform is done numerically using the Fourier expansion techniques. The results for the temperature, the thermal stresses and the displacement components are illustrated graphically for various values of fractional order parameter. Moreover, some particular cases of interest have also been discussed.
In this paper, He's homotopy perturbation method is utilized to obtain the analytical solution for the nonlinear natural frequency of functionally graded nanobeam. The functionally graded nanobeam is modeled using the Eringen's nonlocal elasticity theory based on Euler-Bernoulli beam theory with von Karman nonlinearity relation. The boundary conditions of problem are considered with both sides simply supported and simply supported-clamped. The Galerkin's method is utilized to decrease the nonlinear partial differential equation to a nonlinear second-order ordinary differential equation. Based on numerical results, homotopy perturbation method convergence is illustrated. According to obtained results, it is seen that the second term of the homotopy perturbation method gives extremely precise solution.
Similarity solution is investigated for the synchronous grouting of shield tunnel under the vertical non-axisymmetric displacement boundary condition in the paper. The synchronous grouting process of shield tunnel was simplified as the cylindrical expansion problem, which was based on the mechanism between the slurry and stratum of the synchronous grouting. The stress harmonic function on the horizontal and vertical ground surfaces is improved. Based on the virtual image technique, stress function solutions and Boussinesq's solution, elastic solution under the vertical non-axisymmetric displacement boundary condition on the vertical surface was proposed for synchronous grouting problems of shield tunnel. In addition, the maximum grouting pressure was also obtained to control the vertical displacement of horizontal ground surface. The validity of the proposed approach was proved by the numerical method. It can be known from the parameter analysis that larger vertical displacement of the horizontal ground surface was induced by smaller tunnel depth, smaller tunnel excavation radius, shorter limb distance, larger expansion pressure and smaller elastic modulus of soils.