To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We improve W. Schmidt's lower bound for the slice (intersection of two halfspheres) discrepancy of point distributions on spheres and show that this estimate is up to a logarithmic factor best possible. It is shown that the slice and spherical cap discrepancies are equivalent for the definition of uniformly distributed sequences on spheres.
We consider two unique products for a given p—adic integer x with leading coefficient 1, where anbn ∈ {0, 1,… p − 1}. It is shown that, for almost all such x relative to Haar measure on the p—adic integers, the sequences (an), (bn) are normal to base p, and have standard normal distribution functions.
We exhibit a sequence (un) which is not uniformly distributed modulo one even though for each fixed integer k ≥ 2 the sequence (kun) is u.d. (mod 1). Within the set of all such sequences, we characterize those with a well-behaved asymptotic distribution function. We exhibit a sequence (un) which is u.d. (mod 1) even though no subsequence of the form (ukn + j) is u.d. (mod 1) for any k ≥ 2. We prove that, if the subsequences (ukn) are u.d. (mod 1) for all squarefree k which are products of primes in a fixed set P, then (un) is u.d. (mod I) if the sum of the reciprocals of the primes in P diverges. We show that this result is the best possible of its type.
Let S be the surface of the unit sphere in three-dimensional euclidean space, and let WN=(x1x2, xN)be an N-tuple of points on S. We consider the product of mutual distances and, for the variable point x on S, the product of distance from x to the points of ωN. We obtain essentially best possible bounds for maxωN p(ΩN) and for minωN maxx∈sp(x, ωN).
Let R, S be a partition of 2, 3,… so that rational powers fall in the same class. Let (λn) be any real sequence; we show that there exists a set N, of dimension 1, so that (x + λn) (n = 1,2, …) are normal to every base from R and to no base from S, for every x ∈ N.
Let $g\geqslant 2$. A real number is said to be $g$-normal if its base $g$ expansion contains every finite sequence of digits with the expected limiting frequency. Let $\unicode[STIX]{x1D711}$ denote Euler’s totient function, let $\unicode[STIX]{x1D70E}$ be the sum-of-divisors function, and let $\unicode[STIX]{x1D706}$ be Carmichael’s lambda-function. We show that if $f$ is any function formed by composing $\unicode[STIX]{x1D711}$, $\unicode[STIX]{x1D70E}$, or $\unicode[STIX]{x1D706}$, then the number
obtained by concatenating the base $g$ digits of successive $f$-values is $g$-normal. We also prove the same result if the inputs $1,2,3,\ldots$ are replaced with the primes $2,3,5,\ldots$. The proof is an adaptation of a method introduced by Copeland and Erdős in 1946 to prove the 10-normality of $0.235711131719\cdots \,$.