To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish an error term in the Sato–Tate theorem of Birch. That is, for $p$ prime, $q=p^{r}$ and an elliptic curve $E:y^{2}=x^{3}+ax+b$, we show that
for any interval $I\subseteq [0,\unicode[STIX]{x1D70B}]$, where the quantity $\unicode[STIX]{x1D703}_{a,b}$ is defined by $2\sqrt{q}\cos \unicode[STIX]{x1D703}_{a,b}=q+1-E(\mathbb{F}_{q})$ and $\unicode[STIX]{x1D707}_{ST}(I)$ denotes the Sato–Tate measure of the interval $I$.
For $x\in (0,1]$ and a positive integer $n,$ let $S_{\!n}(x)$ denote the summation of the first $n$ digits in the dyadic expansion of $x$ and let $r_{n}(x)$ denote the run-length function. In this paper, we obtain the Hausdorff dimensions of the following sets:
In this paper, we derive geometric and analytic properties of invariant sets, including orbit closures, of a large class of piecewise-affine maps $T$ on $\mathbb{R}^{d}$. We assume that (i) $T$ consists of finitely many affine maps defined on a Borel measurable partition of $\mathbb{R}^{d}$, (ii) there is a lattice $\mathscr{L}\subset \mathbb{R}^{d}$ that contains all of the mutual differences of the translation vectors of these affine maps, and (iii) all of the affine maps have the same linear part that is an automorphism of $\mathscr{L}$. We prove that finite-volume invariant sets of such piecewise-affine maps always consist of translational tiles relative to this lattice, up to some multiplicity. When the partition is Jordan measurable, we show that closures of bounded orbits of $T$ are invariant and yield Jordan measurable tiles, again up to some multiplicity. In the latter case, we show that compact $T$-invariant sets also consist of Jordan measurable tiles. We then utilize these results to quantify the rate of convergence of ergodic averages for $T$ in the case of bounded single tiles.
We consider sequences of the form $(a_{n}\unicode[STIX]{x1D6FC})_{n}$ mod 1, where $\unicode[STIX]{x1D6FC}\in [0,1]$ and where $(a_{n})_{n}$ is a strictly increasing sequence of positive integers. If the asymptotic distribution of the pair correlations of this sequence follows the Poissonian model for almost all $\unicode[STIX]{x1D6FC}$ in the sense of Lebesgue measure, we say that $(a_{n})_{n}$ has the metric pair correlation property. Recent research has revealed a connection between the metric theory of pair correlations of such sequences, and the additive energy of truncations of $(a_{n})_{n}$. Bloom, Chow, Gafni and Walker speculated that there might be a convergence/divergence criterion which fully characterizes the metric pair correlation property in terms of the additive energy, similar to Khintchine’s criterion in the metric theory of Diophantine approximation. In the present paper we give a negative answer to such speculations, by showing that such a criterion does not exist. To this end, we construct a sequence $(a_{n})_{n}$ having large additive energy which, however, maintains the metric pair correlation property.
We consider point distributions in compact connected two-point homogeneous spaces (Riemannian symmetric spaces of rank one). All such spaces are known: they are the spheres in the Euclidean spaces, the real, complex and quaternionic projective spaces and the octonionic projective plane. For all such spaces the best possible bounds for the quadratic discrepancies and sums of pairwise distances are obtained in the paper (Theorems 2.1 and 2.2). Distributions of points of $t$-designs on such spaces are also considered (Theorem 2.3). In particular, it is shown that the optimal $t$-designs meet the best possible bounds for quadratic discrepancies and sums of pairwise distances (Corollary 2.1). Our approach is based on the Fourier analysis on two-point homogeneous spaces and explicit spherical function expansions for discrepancies and sums of distances (Theorems 4.1 and 4.2).
We study Piatetski-Shapiro sequences $(\lfloor n^{c}\rfloor )_{n}$ modulo $m$, for non-integer $c>1$ and positive $m$, and we are particularly interested in subword occurrences in those sequences. We prove that each block $\in \{0,1\}^{k}$ of length $k<c+1$ occurs as a subword with the frequency $2^{-k}$, while there are always blocks that do not occur. In particular, those sequences are not normal. For $1<c<2$, we estimate the number of subwords from above and below, yielding the fact that our sequences are deterministic and not morphic. Finally, using the Daboussi–Kátai criterion, we prove that the sequence $\lfloor n^{c}\rfloor$ modulo $m$ is asymptotically orthogonal to multiplicative functions bounded by 1 and with mean value 0.
The lonely runner conjecture, now over fifty years old, concerns the following problem. On a unit-length circular track, consider $m$ runners starting at the same time and place, each runner having a different constant speed. The conjecture asserts that each runner is lonely at some point in time, meaning at a distance at least $1/m$ from the others. We formulate a function field analogue, and give a positive answer in some cases in the new setting.
In this paper we study digit frequencies in the setting of expansions in non-integer bases, and self-affine sets with non-empty interior. Within expansions in non-integer bases we show that if $\unicode[STIX]{x1D6FD}\in (1,1.787\ldots )$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a simply normal $\unicode[STIX]{x1D6FD}$-expansion. We also prove that if $\unicode[STIX]{x1D6FD}\in (1,(1+\sqrt{5})/2)$ then every $x\in (0,1/(\unicode[STIX]{x1D6FD}-1))$ has a $\unicode[STIX]{x1D6FD}$-expansion for which the digit frequency does not exist, and a $\unicode[STIX]{x1D6FD}$-expansion with limiting frequency of zeros $p$, where $p$ is any real number sufficiently close to $1/2$. For a class of planar self-affine sets we show that if the horizontal contraction lies in a certain parameter space and the vertical contractions are sufficiently close to $1$, then every non-trivial vertical fibre contains an interval. Our approach lends itself to explicit calculation and gives rise to new examples of self-affine sets with non-empty interior. One particular strength of our approach is that it allows for different rates of contraction in the vertical direction.
We establish several new metrical results on the distribution properties of the sequence ({xn})n≥1, where {·} denotes the fractional part. Many of them are presented in a more general framework, in which the sequence of functions (x ↦ xn)n≥1 is replaced by a sequence (fn)n≥1, under some growth and regularity conditions on the functions fn.
In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence ${\mathcal{D}}$, we obtain a sharp criterion such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality
has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ for a certain one-parameter family of $\unicode[STIX]{x1D713}$. Also, under a minor condition on pseudo-absolute-value sequences ${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$, we obtain a sharp criterion on a general sequence $\unicode[STIX]{x1D713}(n)$ such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality
In this paper we establish a general form of the mass transference principle for systems of linear forms conjectured in 2009. We also present a number of applications of this result to problems in Diophantine approximation. These include a general transference of Lebesgue measure Khintchine–Groshev type theorems to Hausdorff measure statements. The statements we obtain are applicable in both the homogeneous and inhomogeneous settings as well as allowing transference under any additional constraints on approximating integer points. In particular, we establish Hausdorff measure counterparts of some Khintchine–Groshev type theorems with primitivity constraints recently proved by Dani, Laurent and Nogueira.
Let 𝔽q be the finite field of q elements. An analogue of the regular continued fraction expansion for an element α in the field of formal Laurent series over 𝔽q is given uniquely by
where $(A_{n}(\alpha))_{n=0}^{\infty}$ is a sequence of polynomials with coefficients in 𝔽q such that deg(An(α)) ⩾1 for all n ⩾ 1. In this paper, we provide quantitative versions of metrical results regarding averages of partial quotients. A sample result we prove is that, given any ϵ > 0, we have
Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let
$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$. In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$.
Let $\unicode[STIX]{x1D713}:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}$ be a non-increasing function. A real number $x$ is said to be $\unicode[STIX]{x1D713}$-Dirichlet improvable if it admits an improvement to Dirichlet’s theorem in the following sense: the system
has a non-trivial integer solution for all large enough $t$. Denote the collection of such points by $D(\unicode[STIX]{x1D713})$. In this paper we prove that the Hausdorff measure of the complement $D(\unicode[STIX]{x1D713})^{c}$ (the set of $\unicode[STIX]{x1D713}$-Dirichlet non-improvable numbers) obeys a zero-infinity law for a large class of dimension functions. Together with the Lebesgue measure-theoretic results established by Kleinbock and Wadleigh [A zero-one law for improvements to Dirichlet’s theorem. Proc. Amer. Math. Soc.146 (2018), 1833–1844], our results contribute to building a complete metric theory for the set of Dirichlet non-improvable numbers.
We study the minimal gap statistic for fractional parts of sequences of the form ${\mathcal{A}}^{\unicode[STIX]{x1D6FC}}=\{\unicode[STIX]{x1D6FC}a(n)\}$, where ${\mathcal{A}}=\{a(n)\}$ is a sequence of distinct integers. Assuming that the additive energy of the sequence is close to its minimal possible value, we show that for almost all $\unicode[STIX]{x1D6FC}$, the minimal gap $\unicode[STIX]{x1D6FF}_{\min }^{\unicode[STIX]{x1D6FC}}(N)=\min \{\unicode[STIX]{x1D6FC}a(m)-\unicode[STIX]{x1D6FC}a(n)\hspace{0.2em}{\rm mod}\hspace{0.2em}1:1\leqslant m\neq n\leqslant N\}$ is close to that of a random sequence.
We generalize Skriganov’s notion of weak admissibility for lattices to include standard lattices occurring in Diophantine approximation and algebraic number theory, and we prove estimates for the number of lattice points in sets such as aligned boxes. Our result improves on Skriganov’s celebrated counting result if the box is sufficiently distorted, the lattice is not admissible, and, e.g., symplectic or orthogonal. We establish a criterion under which our error term is sharp, and we provide examples in dimensions $2$ and $3$ using continued fractions. We also establish a similar counting result for primitive lattice points, and apply the latter to the classical problem of Diophantine approximation with primitive points as studied by Chalk, Erdős, and others. Finally, we use o-minimality to describe large classes of sets to which our counting results apply.
It has been known since Vinogradov that, for irrational $\unicode[STIX]{x1D6FC}$, the sequence of fractional parts $\{\unicode[STIX]{x1D6FC}p\}$ is equidistributed in $\mathbb{R}/\mathbb{Z}$ as $p$ ranges over primes. There is a natural second-order equidistribution property, a pair correlation of such fractional parts, which has recently received renewed interest, in particular regarding its relation to additive combinatorics. In this paper we show that the primes do not enjoy this stronger equidistribution property.
Let $P^{+}(n)$ denote the largest prime factor of the integer $n$ and $P_{y}^{+}(n)$ denote the largest prime factor $p$ of $n$ which satisfies $p\leqslant y$. In this paper, first we show that the triple consecutive integers with the two patterns $P^{+}(n-1)>P^{+}(n)<P^{+}(n+1)$ and $P^{+}(n-1)<P^{+}(n)>P^{+}(n+1)$ have a positive proportion respectively. More generally, with the same methods we can prove that for any$J\in \mathbb{Z}$, $J\geqslant 3$, the $J$-tuple consecutive integers with the two patterns $P^{+}(n+j_{0})=\min _{0\leqslant j\leqslant J-1}P^{+}(n+j)$ and $P^{+}(n+j_{0})=\max _{0\leqslant j\leqslant J-1}P^{+}(n+j)$ also have a positive proportion, respectively. Second, for $y=x^{\unicode[STIX]{x1D703}}$ with $0<\unicode[STIX]{x1D703}\leqslant 1$ we show that there exists a positive proportion of integers $n$ such that $P_{y}^{+}(n)<P_{y}^{+}(n+1)$. Specifically, we can prove that the proportion of integers $n$ such that $P^{+}(n)<P^{+}(n+1)$ is larger than 0.1356, which improves the previous result “0.1063” of the author.
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set
$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
Let $b$ be an integer larger than 1. We give an asymptotic formula for the exponential sum
$$\begin{eqnarray}\mathop{\sum }_{\substack{ p\leqslant x \\ g(p)=k}}\exp \big(2\text{i}\unicode[STIX]{x1D70B}\unicode[STIX]{x1D6FD}p\big),\end{eqnarray}$$
where the summation runs over prime numbers $p$ and where $\unicode[STIX]{x1D6FD}\in \mathbb{R}$, $k\in \mathbb{Z}$, and $g:\mathbb{N}\rightarrow \mathbb{Z}$ is a strongly $b$-additive function such that $\operatorname{pgcd}(g(1),\ldots ,g(b-1))=1$.