We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let 𝒟=(dn)∞n=1 be a sequence of integers with dn≥2, and let (i,j) be a pair of strictly positive numbers with i+j=1. We prove that the set of x∈ℝ for which there exists some constant c(x)≧0 such that is one-quarter winning (in the sense of Schmidt games). Thus the intersection of any countable number of such sets is of full dimension. This, in turn, establishes the natural analogue of Schmidt’s conjecture within the framework of the de Mathan–Teulié conjecture, also known as the “mixed Littlewood conjecture”.
Continuing earlier studies over the real numbers, we study the expressible set of a sequence A = (an)n≥1 of p-adic numbers, which we define to be the set EpA = {∑n≥1ancn: cn ∈ ℕ}. We show that in certain circumstances we can calculate the Haar measure of EpA exactly. It turns out that our results extend to sequences of matrices with p-adic entries, so this is the setting in which we work.
Let α be a totally positive algebraic integer of degree d≥2 and α1=α,α2,…,αd be all its conjugates. We use explicit auxiliary functions to improve the known lower bounds of Sk/d, where Sk=∑ di=1αki and k=1,2,3. These improvements have consequences for the search of Salem numbers with negative traces.
A Diophantinem-tuple is a set A of m positive integers such that ab+1 is a perfect square for every pair a,b of distinct elements of A. We derive an asymptotic formula for the number of Diophantine quadruples whose elements are bounded by x. In doing so, we extend two existing tools in ways that might be of independent interest. The Erdős–Turán inequality bounds the discrepancy between the number of elements of a sequence that lie in a particular interval modulo 1 and the expected number; we establish a version of this inequality where the interval is allowed to vary. We also adapt an argument of Hooley on the equidistribution of solutions of polynomial congruences to handle reducible quadratic polynomials.
Borel conjectured that all algebraic irrational numbers are normal in base 2. However, very little is known about this problem. We improve the lower bounds for the number of digit changes in the binary expansions of algebraic irrational numbers.
We investigate the distribution of real algebraic numbers of a fixed degree that have a close conjugate number, with the distance between the conjugate numbers being given as a function of their height. The main result establishes the ubiquity of such algebraic numbers in the real line and implies a sharp quantitative bound on their number. Although the main result is rather general, it implies new estimates on the least possible distance between conjugate algebraic numbers, which improve recent bounds obtained by Bugeaud and Mignotte. So far, the results à la Bugeaud and Mignotte have relied on finding explicit families of polynomials with clusters of roots. Here we suggest a different approach in which irreducible polynomials are implicitly tailored so that their derivatives assume certain values. We consider some applications of our main theorem, including generalisations of a theorem of Baker and Schmidt and a theorem of Bernik, Kleinbock and Margulis in the metric theory of Diophantine approximation.
Let A be an n×m matrix with real entries. Consider the set BadA of x∈[0,1)n for which there exists a constant c(x)>0 such that for any q∈ℤm the distance between x and the point {Aq} is at least c(x)|q|−m/n. It is shown that the intersection of BadA with any suitably regular fractal set is of maximal Hausdorff dimension. The linear form systems investigated in this paper are natural extensions of irrational rotations of the circle. Even in the latter one-dimensional case, the results obtained are new.
Let AN be an N-point set in the unit square and consider the discrepancy function
where x = (x1, x2) ∈ [0,1;]2, and |[0, x)]| denotes the Lebesgue measure of the rectangle. We give various refinements of a well-known result of Schmidt [Irregularities of distribution. VII. Acta Arith. 21 (1972), 45–50] on the L∞ norm of DN. We show that necessarily
The case of α = ∞ is the Theorem of Schmidt. This estimate is sharp. For the digit-scrambled van der Corput sequence, we have
whenever N = 2n for some positive integer n. This estimate depends upon variants of the Chang–Wilson–Wolff inequality [S.-Y. A. Chang, J. M. Wilson and T. H.Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv.60(2) (1985), 217–246]. We also provide similar estimates for the BMO norm of DN.
In this paper we address the general issue of estimating the sensitivity of the expectation of a random variable with respect to a parameter characterizing its evolution. In finance, for example, the sensitivities of the price of a contingent claim are called the Greeks. A new way of estimating the Greeks has recently been introduced in Elie, Fermanian and Touzi (2007) through a randomization of the parameter of interest combined with nonparametric estimation techniques. In this paper we study another type of estimator that turns out to be closely related to the score function, which is well known to be the optimal Greek weight. This estimator relies on the use of two distinct kernel functions and the main interest of this paper is to provide its asymptotic properties. Under a slightly more stringent condition, its rate of convergence is the same as the one of the estimator introduced in Elie, Fermanian and Touzi (2007) and outperforms the finite differences estimator. In addition to the technical interest of the proofs, this result is very encouraging in the dynamic of creating new types of estimator for the sensitivities.
We study the Gowers norm for periodic binary sequences and relate it to correlation measures for such sequences. The case of periodic binary sequences derived from inversive pseudorandom numbers is considered in detail.
Let Bn(x) denote the number of 1’s occurring in the binary expansion of an irrational number x>0. A difficult problem is to provide nontrivial lower bounds for Bn(x) for interesting numbers such as , e or π: their conjectural simple normality in base 2 is equivalent to Bn(x)∼n/2. In this article, amongst other things, we prove inequalities relating Bn(x+y), Bn(xy) and Bn(1/x) to Bn(x) and Bn(y) for any irrational numbers x,y>0, which we prove to be sharp up to a multiplicative constant. As a by-product, we provide an answer to a question raised by Bailey et al. (D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, ‘On the binary expansions of algebraic numbers’, J. Théor. Nombres Bordeaux16(3) (2004), 487–518) concerning the binary digits of the square of a series related to the Fibonacci sequence. We also obtain a slight refinement of the main theorem of the same article, which provides a nontrivial lower bound for Bn(α) for any real irrational algebraic number. We conclude the article with effective or conjectural lower bounds for Bn(x) when x is a transcendental number.
We consider the weak convergence of the set of strongly additive functions f(q) with rational argument q. It is assumed that f(p) and f(1/p) ∈ {0, 1} for all primes. We obtain necessary and sufficient conditions of the convergence to the limit distribution. The proof is based on the method of factorial moments. Sieve results, and Halász's and Ruzsa's inequalities are used. We present a few examples of application of the given results to some sets of fractions.
This paper treats the L2-discrepancy of digital (0, 1)-sequences over ℤ2, and gives conditions on the generator matrix of such a sequence which guarantee minimal possible order of L2-discrepancy of the generated sequence. The existence is proved for the first time of digital (0; 1)-sequences over ℤ2 with L2-discrepancy of order . This order is best possible by a result of K. Roth. The existence proof is constructive.
We provide a new probabilistic explanation for the appearance of Benford's law in everyday-life numbers, by showing that it arises naturally when we consider mixtures of uniform distributions. Then we connect our result to a result of Flehinger, for which we provide a shorter proof and the speed of convergence.
The higher Lie characters of the symmetric group Sn arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of Sn. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraśkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
For any positive integer q≧2, let Fq be a finite field with q elements, Fq ((z-1)) be the field of all formal Laurent series in an inderminate z, I denote the valuation ideal z-1Fq [[z-1]] in the ring of formal power series Fq ((z-1)) normalized by P(l) = 1. For any x ∈ I, let the series be the Engel expansin of Laurent series of x. Grabner and Knopfmacher have shown that the P-measure of the set A(α) = {x ∞ I: limn→∞ deg an(x)/n = ά} is l when α = q/(q -l), where deg an(x) is the degree of polynomial an(x). In this paper, we prove that for any α ≧ l, A(α) has Hausdorff dimension l. Among other thing we also show that for any integer m, the following set B(m) = {x ∈ l: deg an+1(x) - deg an(x) = m for any n ≧ l} has Hausdorff dimension 1.
An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.
A new version of Erdös-Turán's inequality is described. The purpose of the present paper is to show that the inequality provides better upper bounds for the discrepancies of some sequences than usual Erdös-Turán's inequality.